приложение 1

УТВЕРЖДЕНО

приказом ФИЦ КазНЦ РАН от 01.03.2019 № 8-А

Разработано и рекомендовано к утверждению Ученым советом КИББ ФИЦ КазНЦ РАН 14 января 2019 г., протокол №1

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Биофизика»

Уровень высшего образования Подготовка кадров высшей квалификации Направление подготовки

06.06.01 Биологические науки

Направленность подготовки: 03.01.02 – Биофизика

Квалификация выпускника:

Исследователь. Преподаватель-исследователь

Содержание

- 1. Виды учебной деятельности, способ и формы ее проведения, трудоемкость дисциплины.
 - 2. Перечень планируемых результатов обучения.
 - 3. Место дисциплины в структуре образовательной программы.
 - 4. Содержание дисциплины
- 5. Формы текущего контроля и промежуточной аттестации, критерии оценки.
- 6. Перечень учебной литературы и ресурсов сети "Интернет", необходимых для освоения дисциплины.
- 7. Описание материально-технической базы, необходимой для освоения дисциплины.

1. Виды учебной деятельности, способ и формы ее проведения, трудоемкость дисциплины

Виды учебной деятельности: аудиторные занятия - 1 зачетная единицы труда (36 часов), самостоятельная работа – 9 зачетных единиц труда (324 часа), всего – 10 зачетных единиц труда (360 часов).

Форма проведения аудиторных занятий – лекции и консультации.

В рамках часов самостоятельной работы по указанию преподавателя аспиранты прорабатывают темы и осваивают теоретические вопросы, излагаемые в лекционном курсе, а также самостоятельно изучают другие вопросы программы.

Формой текущего контроля является зачет.

Формой промежуточной аттестации является кандидатский экзамен.

2. Перечень планируемых результатов обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

2.1 Универсальные компетенции:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки (УК-2);
- ▶ готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научнообразовательных задач (УК-3);
- ▶ готовность использовать современные методы и технологии научной коммуникации на государственном и иностранном языках (УК-4);
- ▶ способность планировать и решать задачи собственного профессионального и личностного развития (УК-5).

2.2 Обще-профессиональные компетенции:

- ▶ способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационнокоммуникационных технологий (ОПК-1);
- готовность к преподавательской деятельности по основным

образовательным программам высшего образования (ОПК-2).

2.3 Профессиональные компетенции:

- способность собирать и анализировать мировые научные знания в области современной биологии и биотехнологии, формулировать направления самостоятельных исследований (ПК-1);
- владение основами современных методов исследований в биологии (ПК-2);
- ▶ способность обобщать и анализировать полученные результаты и представлять их в виде научных публикаций (ПК-3).

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Биофизика» является обязательной и включена в Блок № 1 программы аспирантуры, относящийся к вариативной части основной профессиональной образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре по направлению подготовки 06.06.01 Биологические науки. Обучение проводится на втором курсе.

Данная дисциплина базируется на знаниях и умениях, выработанных при прохождении общих профессиональных курсов «Молекулярная биология», «Физическая химия», «Молекулярная физика», «Методы биофизики» в рамках магистерской программы образования или специалитета. Аспирант должен обладать навыками самостоятельного освоения изучаемого материала. Дисциплина направлена на подготовку к сдаче кандидатского экзамена по специальной дисциплине.

В результате освоения дисциплины аспирант должен получить дополнительные знания, умения и навыки. Аспирант должен:

Знать:

- > основные направления развития биофизики;
- особенности строения и функционирования биологических макромолекул;
- ▶ основные методические подходы к изучению структуры, динамики и активности белков: методы ЭПР, ЯМР, ИК-, КД-, УФ- и флуоресцентной спектроскопии, молекулярной динамики;
- > сферы применения биотехнологии в народном хозяйстве и медицине;
- **р** правила техники безопасности при проведении экспериментальных работ в лабораторных условиях.
- > Уметь:
- критически анализировать и оценивать основные концепции и генерировать новые идеи в избранной профессиональной области и междисциплинарных дисциплинах;

- обсуждать полученные результаты в профессиональной и междисциплинарной аудитории;
- ориентироваться в специальной научной и методической литературе по профилю подготовки и смежным вопросам;
- проводить биофизические эксперименты

Владеть:

- ▶ навыками анализа методологических проблем при решении исследовательских и практических задач, в том числе в междисциплинарных областях;
- навыками критического анализа и оценки современных научных достижений и результатов деятельности по решению исследовательских и практических задач, в том числе в междисциплинарных областях;
- навыками анализа основных мировоззренческих и методологических проблем;
- навыками использования теоретических знаний для объяснения особенностей действия физических факторов на живые организмы
- технологиями планирования в профессиональной деятельности в сфере научных исследований;
- теоретическими знаниями об особенностях строения живых систем на молекулярном и клеточном уровнях организации живой материи и функциях их отдельных элементов;
- навыками практической работы в биофизической лаборатории: приготовление образцов, проведение экспериментов, анализ полученных данных.
- системным пониманием актуальных проблем методологического арсенала биологических наук;
- системным пониманием перспектив развития и социального значения избранной профессиональной области.

4. Содержание дисциплины

а Лекционный материал 1 зет (36 часов)

No	Содержание излагаемого материала
Π/Π	
1	Биологические и физические процессы и закономерности в живых
	системах. Методологические вопросы биофизики. История развития
	отечественной биофизики. Задачи биофизики в практике народного
	хозяйства.

2	Особенности механизмов ферментативных реакций. Кинетика
	простейших ферментативных реакций. Условия реализации
	стационарности. Уравнение Михаэлиса-Ментен. Влияние модификаторов
	на кинетику ферментативных реакций. Общие принципы анализа более
	сложных ферментативных реакций.
3	Первый и второй законы термодинамики в биологии. Теплоемкость и
	сжимаемость белковых глобул. Расчеты энергетических эффектов реакций
	в биологических системах. Характеристические функции и их
	использование в анализе биологических процессов.
4	Применение линейной термодинамики в биологии. Термодинамические
1	характеристики молекулярно-энергетических процессов в биосистемах.
	Нелинейная термодинамика. Общие критерии устойчивости стационарных
	состояний и перехода к ним вблизи и вдали от равновесия. Связь энтропии
	и информации в биологических системах.
5	Макромолекула как основа организации биоструктур. Пространственная
	конфигурация биополимеров. Статистический характер конформации
	биополимеров. Особенности пространственной организации белков и
	нуклеиновых кислот.
6	Условия стабильности конфигурации макромолекул. Фазовые переходы.
0	Переходы глобула- клубок. Кооперативные свойства макромолекул. Типы
	взаимодействий в белковых макромолекулах. Водородные связи: силы
	Ван-дер-Ваальса; электростатические взаимодействия; поворотная
	изомерия и энергия внутреннего вращения. Расчет общей конформации
	энергии биополимеров.
7	
/	
8	Переходы спираль-клубок. Электронная корреляция в атомах и молекулах. Её проявления в свойствах
0	молекул. Метод конфигурационного взаимодействия.
9	Представления о зарядах на атомах и порядках связей. Различные методы
9	выделения атомов в молекулах. Корреляции дескрипторов электронного
	строения и свойств молекул. Индексы реакционной способности. Теория граничных орбиталей.
10	<u> </u>
10	Структурные и энергетические факторы, определяющие динамическую подвижность белков. Динамическая структура олигопептидов и
11	глобулярных белков; конформационная подвижность.
11	Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, ЭПР, гамма- резонансная спектроскопия, ЯМР
	высокого разрешения, импульсные методы ЯМР, методы молекулярной
	динамики. Авто- и кросскорреляционные функции торсионных углов и
	межатомных расстояний.

12	Электронные уровни в биополимерах. Основные типы молекулярных
	орбиталей и электронных состояний, π-электроны, энергия делокализации.
	Принцип Франка-Кондона и законы флуоресценции. Люминесценция
	биологически важных молекул. Природа гиперхромного и гипохромного
	эффектов. Оптическая плотность.
13	Мембрана как универсальный компонент биологических систем.
	Характеристика мембранных белков. Характеристика мембранных
	липидов. Динамика структурных элементов мембраны. Белок-липидные
	взаимодействия. Вода как составной элемент биомембран.
14	Пассивный и активный транспорт веществ через биомембраны. Транспорт
	неэлектролитов. Проницаемость мембран для воды. Простая диффузия.
	Ограниченная диффузия.
15	Общие закономерности взаимодействия лигандов с рецепторами. Общие
	представления о структуре и функции рецепторных клеток. Место
	рецепторных процессов в работе сенсорных систем. Фоторецепция.
	Строение зрительной клетки. Общие представления о структуре и
	функции рецепторных клеток. Вкус. Вкусовые качества. Строение
	вкусовых клеток. проблема вкусовых рецепторных белков.
16	Взаимодействие квантов с молекулами. Эволюция волнового пакета и
	результаты фемптосекундной спектроскопии. Первичные фотохимические
	реакции. Кинетика и физические механизмы переноса электрона в
	электрон-транспортных цепях при фотосинтезе.

б Самостоятельная работа 9 зет (324 часа)

No	Содержание материала								
п/п									
1	Основы классической теории химического строения. Основные положения классической теории химического строения. Структурная формула и граф молекулы. Изомерия. Конформации молекул. Связь строения и свойств молекул.								
2	Задачи математического моделирования в биологии. Динамические модели								
	биологических процессов. Линейные и нелинейные процессы.								
3	Множественность стационарных состояний. Устойчивость стационарных								
	состояний. Модели триггерного типа. Силовое и параметрическое								
	переключение триггера. Колебательные процессы в биологии.								
	Автоколебательные режимы. Предельные циклы и их устойчивость.								
4	Электрические и магнитные свойства. Дипольный момент и								
	поляризуемость молекул. Магнитный момент и магнитная								
	восприимчивость. Эффекты Штарка и Зеемана. Магнитно-резонансные								

 Оптические спектры молекул. Вероятности переходов и правила отбора при переходах между различными квантовыми состояниями молекул. Связь спектров молекул с их строением. Определение структурных характеристик молекул из спектроскопических данных. Влияние температуры на скорость реакций в биологических системах. Взаимосвязь кинетических и термодинамических параметров. Роль конформационных свойств биополимеров. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь. 		моточи насполования отпосния моломун. Учинический оприд
переходах между различными квантовыми состояниями молекул. Связь спектров молекул с их строением. Определение структурных характеристик молекул из спектроскопических данных. 6 Влияние температуры на скорость реакций в биологических системах. Взаимосвязь кинетических и термодинамических параметров. Роль конформационных свойств биополимеров. 7 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. 8 Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 9 Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		методы исследования строения молекул. Химический сдвиг.
спектров молекул с их строением. Определение структурных характеристик молекул из спектроскопических данных. Влияние температуры на скорость реакций в биологических системах. Взаимосвязь кинетических и термодинамических параметров. Роль конформационных свойств биополимеров. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.)	
 молекул из спектроскопических данных. Влияние температуры на скорость реакций в биологических системах. Взаимосвязь кинетических и термодинамических параметров. Роль конформационных свойств биополимеров. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь. 		
 Влияние температуры на скорость реакций в биологических системах. Взаимосвязь кинетических и термодинамических параметров. Роль конформационных свойств биополимеров. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь. 		спектров молекул с их строением. Определение структурных характеристик
Взаимосвязь кинетических и термодинамических параметров. Роль конформационных свойств биополимеров. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		молекул из спектроскопических данных.
конформационных свойств биополимеров. 7 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. 8 Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 9 Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.	6	Влияние температуры на скорость реакций в биологических системах.
 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь. 		Взаимосвязь кинетических и термодинамических параметров. Роль
колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		конформационных свойств биополимеров.
колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.	7	Колебания молекул. Нормальные колебания, амплитуды и частоты
 большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействия. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь. 		
Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 9 Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействия. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		_
уровни энергии. 9 Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействия. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.	8	•
 Электронное строение атомов и молекул. Одноэлектронное приближение. Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь. 		
Атомные и молекулярные орбитали. Электронные конфигурации и термы атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.	9	
атомов. Правило Хунда. Электронная плотность. Распределение электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		
электронной плотности в двухатомных молекулах. Корреляционные орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		
орбитальные диаграммы. Теорема Купманса. Пределы применимости одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		
одноэлектронного приближения. 10 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		
 Колебания молекул. Нормальные колебания, амплитуды и частоты колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь. 		
колебаний, частоты основных колебательных переходов. Колебания с большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.	10	
большой амплитудой. Вращение молекул. Различные типы молекулярных волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.	10	· · · · · · · · · · · · · · · · · · ·
волчков. Вращательные уровни энергии. 11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		_
11 Межмолекулярные взаимодействия. Основные составляющие межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		
межмолекулярных взаимодействий. Молекулярные комплексы. Ван-дерваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.		
ваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.	11	* *
Супермолекулы и супрамолекулярная уимия		ваальсовы молекулы. Кластеры атомов и молекул. Водородная связь.
Супориолокулы и суправолокулирная анівия.		Супермолекулы и супрамолекулярная химия.
12 Поверхность конденсированных фаз. Особенности строения поверхности	12	Поверхность конденсированных фаз. Особенности строения поверхности
кристаллов и жидкостей, структура границы раздела конденсированных		кристаллов и жидкостей, структура границы раздела конденсированных
фаз. Молекулы и кластеры на поверхности. Структура адсорбционных		фаз. Молекулы и кластеры на поверхности. Структура адсорбционных
слоев.		слоев.

5. ФОРМЫ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ, КРИТЕРИИ ОЦЕНКИ

5.1. Текущий контроль: текущий контроль освоения дисциплины проводится регулярно, начиная со второй недели обучения, в форме контроля посещаемости, устного опроса по изучаемой теме. Формой итогового контроля по дисциплине является зачет. Зачет проводится по вопросам.

Вопросы к итоговому контролю

- 1. Кинетика простейших ферментативных реакций.
- 2. Уравнение Михаэлиса-Ментен.
- 3. Первый и второй законы термодинамики в биологии.
- 4. Характеристические функции и их использование в анализе биологических процессов.
- 5. Применение линейной термодинамики в биологии.
- 6. Общие критерии устойчивости стационарных состояний и перехода к ним вблизи и вдали от равновесия.
- 7. Пространственная конфигурация биополимеров.
- 8. Переходы глобула клубок.
- 9. Типы взаимодействий в белковых макромолекулах.
- 10. Состояние воды и гидрофобные взаимодействия в биоструктурах.
- 11. Представления о зарядах на атомах и порядках связей.
- 12. Индексы реакционной способности.
- 13. Основные типы молекулярных орбиталей и электронных состояний, πэлектроны, энергия делокализации.
- 14. Характеристика мембранных белков.
- 15. Характеристика мембранных липидов.
- 16. Транспорт неэлектролитов.
- 17. Проницаемость мембран для воды.
- 18. Общие закономерности взаимодействия лигандов с рецепторами.
- 19. Взаимодействие квантов с молекулами.
- 20. Основы классической теории химического строения.
- 21. Колебательные процессы в биологии.
- 22. Дипольный момент и поляризуемость молекул.
- 23. Магнитно-резонансные методы исследования строения молекул. Химический сдвиг.
- 24. Оптические спектры молекул. Определение структурных характеристик молекул из спектроскопических данных.
- 25. Влияние температуры на скорость реакций в биологических системах.
- 26. Водородная связь.
- 27. Супермолекулы и супрамолекулярная химия.

5.2. Критерии оценки итогового контроля:

«зачтено»	Вопрос	расн	крыт	полн	ностьн	о или	ПО	существу,	пр	иведены
	конкретные примеры									
«не зачтено»	Вопрос	не	раск	рыт	или	раскри	ЫT	частично,	не	хватает
	ключевых примеров									

<u>При отсутствии оценки «зачтено» обучающийся не допускается к</u> промежуточной аттестации

5.3. Промежуточная аттестация: кандидатский экзамен по утвержденной программе

Кандидатский экзамен по Биофизике проводится в устной форме по вопросам программы, на экзамене предлагается три вопроса (без билетов). После устного ответа могут заданы дополнительные и уточняющие вопросы, не выходящие за пределы программы кандидатского экзамена.

5.4. Критерии оценки промежуточной аттестации

	– Все вопросы раскрыты полностью;
	– Обучающийся владеет основными теориями и глубоко понимает их
	содержание;
	– Имеет ясное представление связи теории и практики в рамках
(H)	излагаемого материала;
Отлично	– Уверенно владеет необходимыми методами решения конкретных
OT.	задач, может проиллюстрировать основные положения теории
	конкретными примерами;
	– Ясно и четко дает основные определения. Владеет терминологическим
	и понятийным аппаратом;
	– Развернуто отвечает на дополнительные вопросы.
	– Вопросы раскрыты по существу;
	– Обучающийся в целом владеет основными теориями и понимает их
	содержание;
	– Имеет общее представление о связи теории и практики в рамках
011	излагаемого материала;
Хорошо	– Владеет в целом необходимыми методами решения конкретных задач,
	может проиллюстрировать основные положения теории конкретными
	примерами;
	– В достаточной мере владеет понятийным и терминологическим
	аппаратом;
	– Имеет затруднения при ответе на дополнительные вопросы.
	1

6. Учебно-методическое обеспечение

6.1. Основная литература

- **1.** Альбертс Б., Джонсон А., Льюис Дж., Рэфф М., Робертс К., Уолтер П. Молекулярная биология клетки. В 3 томах. М., Регулярная и хаотическая динамика, Институт компьютерных исследований, 2013.
- **2.** Альбертс Б., Джонсон А., Льюис Дж., Рэфф М., Робертс К., Уолтер П. "Основы молекулярной биологии клетки" из-во Лаборатория знаний, 2018. ISBN 978-5-00101-087-6.
- **3.** Волькенштейн М.В. Биофизика, гл.4,6. М: Наука, 1981.
- **4.** Кантор Ч., Шиммел П. Биофизическая химия, т. 1, гл. 2,5; т.3, гл. 17,20,21. М: Мир, 1982.
- **5.** Ленинджер А. Основы биохимии, в 3-х тт., гл. 4-8, 23,29. М: Мир, 1985.
- 6. Матвеев А.М. Молекулярная физика. М., Высшая школа, 1987.
- 7. Огурцов А.Н. Биологические мембраны. НТУ «ХПИ», 2012.
- **8.** Рубин А.Б. Биофизика. т. 1, гл. 7-14. М: Книжный дом "Университет", 1999.
- **9.** Фершт Э. Структура и механизм действия ферментов, гл. 1,8-12. М: Мир, 1980.
- **10.** Финкельштейн А. В., Птицын О. Б. Физика белка. М: Книжный дом "Университет", 2002, 2005.

- **11.** Ченцов Ю.С. Введение в клеточную биологию. Общая цитология. М., 2004.
- **12.** Шульц Г.Е., Ширмер Р.Х. Принципы структурной организации белков. М: Мир, 1982.
- **13.** Эмануэль Н.М., Кнорре Д. Г. Курс химический кинетики. 4-е изд. М: Высшая Школа, 1984.

6.2. Дополнительная литература

- 1. Кикоин А.К., Кикоин И.К. Молекулярная физика. М.: Наука, 1976.
- 2. Полинг Л. Общая химия, гл. 1-6, 9-13, 16, 24. М: Мир, 1974.
- 3. Савельев Н.В. Курс общей физики. Т.1. Механика и молекулярная физика М.: Наука, 1977, Т.3, Молекулярная физика, 2002.
- 4. Сивухин Д.В. Термодинамика и молекулярная физика. Т.2, М.: Наука, 1975, Физматлит МФТИ, 2003.
- 5. Степанов В.М. Молекулярная биология. Структура и функции белков. М.: Изд-во Московского университета: Наука, 2005.

6.3. Электронные ресурсы

- 1. http://humbio.ru. (База знаний по биологии человека).
- 2. http://www.biophys.msu.ru/library/rubin/
- 3. http://www.biophys.msu.ru/library/lectures/

7. Описание материально-технической базы, необходимой для освоения дисциплины

Лекционные, семинарские занятия и консультации, самостоятельная работа по освоению дисциплины и подготовка к сдаче кандидатских экзаменов проводятся в специальных помещениях (читальный зал научной библиотеки и/или конференцзалы), оборудованных мебелью (столы, стулья), классной доской (меловой), компьютером, проектором для демонстрации презентаций, компьютерами с доступом к электронным библиотечно-информационным ресурсам.