ПРИЛОЖЕНИЕ 2

УТВЕРЖДЕНО

приказом ФИЦ КазНЦ РАН от 28.06.2019 № 29-A

Разработано и рекомендовано к утверждению Ученым советом КФТИ - обособленного структурного подразделения ФИЦ КазНЦ РАН 26 июня 2019 г., протокол № 20

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Атомы и молекулы на поверхности»

Уровень высшего образования Подготовка кадров высшей квалификации Направление подготовки

03.06.01 ФИЗИКА И АСТРОНОМИЯ

Направленность подготовки:

01.04.17 – Химическая физика, горение и взрыв, экстремальные состояния вещества

Квалификация выпускника:

Исследователь. Преподаватель-исследователь

Содержание:

- 1. Виды учебной деятельности, способ и формы ее проведения.
- 2. Перечень планируемых результатов обучения.
- 3. Место дисциплины в структуре образовательной программы.
- 4. Трудоемкость дисциплины.
- 5. Содержание дисциплины.
- 6. Формы текущего контроля и промежуточной аттестации, фонд оценочных средств.
- 7. Перечень учебной литературы и ресурсов сети "Интернет", необходимых для освоения дисциплины.
- 8. Описание материально-технической базы, необходимой для освоения дисциплины.

1. Виды учебной деятельности, способ и формы ее проведения

- ▶ виды учебной деятельности: аудиторные занятия 1 зачетная единица труда (36 часов), самостоятельная работа 6 зачетных единиц труда (216 часов), всего 7 зачетных единиц труда (252 часа);
- форма проведения аудиторных занятий лекции и лабораторные работы;
- ▶ в рамках часов самостоятельной работы по указанию преподавателя аспиранты прорабатывают темы и осваивают теоретические вопросы, излагаемые в лекционном курсе, а также самостоятельно изучают другие вопросы программы.

2. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование следующих компетенций:

универсальных

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки (УК-2);
- ▶ готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научнообразовательных задач (УК-3); общепрофессиональных
- ➤ способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1);

профессиональных

- ▶ способность проводить самостоятельные исследования в области химической физики, владеть современными методами физического эксперимента, а также способность анализировать экспериментальные данные с целью исследования термодинамики и кинетики химических реакций, фазовых равновесий в одно- и многокомпонентных системах, процессов адсорбции, гомогенного и гетерогенного катализа (ПК-1);
- способность принимать участие в разработке новых методов и методических подходов в научных исследованиях в области химической физики (ПК-3).

В результате освоения дисциплины аспирант должен Знать

- **у** строение поверхности твердых тел, понимать особенности в расположении атомов на поверхности по сравнению с расположением в объеме твердого тела;
- > основные физические и химические процессы на поверхности твердых тел;
- ▶ основные современные экспериментальные методы изучения поверхности твердых тел;

Уметь:

- » выбирать и применять соответствующие методики сканирующей зондовой микроскопии к конкретным объектам;
- анализировать полученные экспериментальные данные, оценивать правильность полученных результатов;
 Владеть
- практическими навыками работы на сканирующем туннельном и атомносиловом микроскопе;
- навыками обработки полученных изображений поверхности программными методами.

3. Место дисциплины в структуре образовательной программы

Целью дисциплины «Атомы и молекулы на поверхности» является изучение основ современной физики и химии поверхности, а также кристаллографии. Предполагается как теоретическое освоение микроскопических методов исследования поверхности, так и практическая применимость конкретных методов для объектов различной природы. Программой курса предусмотрены лабораторные работы, выполняемые на современном экспериментальном оборудовании.

Дисциплина относится к *дисциплинам по выбору*, входит в состав Блока 1 «Дисциплины (модули)» и относится к вариативной части ОПОП аспирантуры по направлению 03.06.01 Физика и астрономия, направленности 01.04.17 - Химическая физика, горение и взрыв, физика экстремальных состояний вещества. Дисциплина изучается в 3 и 4 семестрах.

Материал, изучаемый в ходе освоения дисциплины, в значительной мере дополняет и расширяет ряд разделов обязательной дисциплины «Химическая физика, горение и взрыв, физика экстремальных состояний вещества».

4. Трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 7 зачетных единиц, в том числе **1 3E** аудиторных занятий и 6 **3E** самостоятельной работы.

№	Дисциплина	Курс	Виды учебной работы (в часах)		
			Покания	Лабораторные	Самостоятельная
			Лекции	занятия	работа
1	Атомы и				
	молекулы на	2	20	16	216
	поверхности				

Форма итогового контроля – зачет.

5. Содержание дисциплины

5.1 Лекционные занятия (аудиторная нагрузка 20 часов, самостоятельная работа 120 часов)

№ п/п	Наименование раздела дисциплины	Содержание раздела
1.	Введение. Основные положения современной физики и химии поверхности	а) исторический очерк развития физики и химии поверхности, б) основные монографии и учебники, в) основные понятия, используемые в физике и химии поверхности, г) обзор экспериментальных методов, их сравнительные характеристики.
2.	Кристаллография поверхности и дифракция электронов	а) симметрия поверхности и описание ее структуры, б) перестройка поверхности при процессах реконструкции, релаксации, адсорбции, в) определение структуры поверхности с помощью дифракции медленных электронов и дифракции быстрых электронов.
3.	Традиционные микроскопические методы исследования поверхности, сравнительный анализ их достоинств и недостатков	а) растровая (РЭМ) и просвечивающая (ПЭМ) электронная микроскопия. б) полевая электронно-эмиссионная микроскопия, в) полевая ионная микроскопия.

4.	Использование методов сканирующей туннельной микроскопии (СТМ) и спектроскопии (СТС) для изучения поверхности на атомарном и молекулярном уровне.	а) основные принципы работы СТМ, получение атомарного разрешения, б) использование метода вольт-амперных характеристик при изучении электронной структуры поверхности, в) особенности СТМ-измерений на воздухе и в вакууме, роль адсорбатов.
5.	Сканирующая зондовая микроскопия - новый метод исследования физических и химических свойств поверхности в нанометровом масштабе.	а) основные принципы работы атомно-силового микроскопа (АСМ), б) дальнодействующие и короткодействующие силы при взаимодействии микрозонда АСМ с поверхностью, использование различных методов регистрации для визуализации топографических, трибологических, магнитных, электрических характеристик поверхности с нанометровым разрешеним, в) изучение in-situ с помощью АСМ химических процессов на поверхности, г) нанолитография с помощью АСМ, д) нанометрология с помощью АСМ, зффекты свертки, реконструкция поверхности по АСМ-изображениям. е) магнитно-силовая микроскопия – МСМ.
6.	Исследование поверхности методами электронной спектроскопии.	а) ультрафиолетовая фотоэлектронная спектроскопия, б) рентгеновская фотоэлектронная спектроскопия, в) Оже-спектроскопия.
7.	Электронная структура поверхности и адсорбция.	а) поверхностные состояния Тамма и Шокли, б) изгиб зон и пиннинг уровня Ферми вблизи поверхности, в) влияние адсорбции на электронные свойства поверхности.

8.	Работа выхода и методы ее измерения	а) работа выхода и электрохимический потенциал, б) зависимость работы выхода от кристаллической структуры и взаимодействия поверхности с адсорбатами, в) основные экспериментальные методы измерения работы выхода.	
9.	Адсорбция и катализ.	а) физическая и химическая адсорбция б) роль диссоциативной хемосорбции и молекулярной физической адсорбции в гетерогенном катализе.	

5.2. Лабораторные занятия (аудиторная нагрузка 16 часов, самостоятельная работа 96 часов)

№ п/п	Наименование раздела дисциплины	Примеры выполняемых экспериментальных работ		
1	Адсорбция и	Формирование на стандартных подложках тонких		
1	сканирующая	пленок полимеров и исследование морфологии их		
	зондовая микроскопия	поверхности методом атомно-силовой микроскопии		
2	Сканирующая	Исследование распределения магнитных моментов на		
	зондовая микроскопия	поверхности стандартного образца (жесткого диска) с		
		помощью магнитно-силовой микроскопии.		

6. Формы текущего контроля и промежуточной аттестации, фонд оценочных средств

Текущий контроль освоения дисциплины проводится регулярно, начиная со второй недели обучения, в форме контроля посещаемости, устного опроса по теме, анализа результатов решения практических задач и выполненных лабораторных работ.

Промежуточный контроль подразумевает проведение коллоквиума по учебному материалу нескольких тем.

Формой итогового контроля по дисциплине является зачет.

I. Контрольные темы и вопросы для проведения текущего и итогового контроля по дисциплине «Атомы и молекулы на поверхности»:

Тема 1 Введение. Основные положения современной физики и химии поверхности.

Тема 2 Кристаллография поверхности и дифракция электронов.

Тема 3 Традиционные микроскопические методы исследования поверхности, сравнительный анализ их достоинств и недостатков.

Основные понятия, используемые в физике и химии поверхности, симметрия поверхности и описание ее структуры, перестройка поверхности при процессах реконструкции, релаксации, адсорбции, растровая (РЭМ) и просвечивающая (ПЭМ) электронная микроскопия, полевая электронно-эмиссионная микроскопия, полевая ионная микроскопия.

Тема 4 Использование методов сканирующей туннельной микроскопии (СТМ) и спектроскопии (СТС) для изучения поверхности на атомарном и молекулярном уровне.

Тема 5 Сканирующая зондовая микроскопия - новый метод исследования физических и химических свойств поверхности в нанометровом масштабе.

Основные принципы работы СТМ, получение атомарного разрешения, использование метода вольт-амперных характеристик при изучении электронной структуры поверхности, особенности СТМ-измерений на воздухе и в вакууме, роль адсорбатов. основные принципы работы и методики атомно-силового микроскопа (АСМ), дальнодействующие и короткодействующие силы при взаимодействии микрозонда АСМ с поверхностью, нанолитография с помощью АСМ,

Тема 6 Исследование поверхности методами электронной спектроскопии.

Тема 7 Электронная структура поверхности и адсорбция.

Тема 8 Работа выхода и методы ее измерения.

Тема 9 Адсорбция и катализ.

Основы фотоэлектронной спектроскопии, Оже-спектроскопии, поверхностные состояния Тамма и Шокли, изгиб зон и пиннинг уровня Ферми вблизи поверхности, влияние адсорбции на электронные свойства поверхности, работа выхода и электрохимический потенциал, основные экспериментальные методы измерения работы выхода, физическая и химическая адсорбция, роль диссоциативной хемосорбции и молекулярной физической адсорбции в гетерогенном катализе.

II. Критерии оценки и шкала оценивания результатов освоения дисциплины «Атомы и молекулы на поверхности»:

№	Результат освоения дисциплины	Балл	Показатели
п/п			оценивания
	Знание		
1.	методов критического анализа и оценки	1	недостаточный уровень
	современных научных достижений, а		знания
	также методов генерирования новых	2	достаточный уровень
	идей при решении исследовательских и		знания
	практических задач в области	3	высокий уровень
	поверхности твердых тел		знания

		1		
2.	роли и места поверхностных явлений в	1	недостаточный уровень	
	современной физике твердого тела,		знания	
	стадий ее эволюции и взаимосвязи с	2	достаточный уровень	
	другими разделами физики;		знания	
		3	высокий уровень	
			знания	
3.	особенностей научной терминологии,	1	недостаточный уровень	
	понятийного аппарата поверхностных		знания	
	явлений, используемых при	2	достаточный уровень	
	представлении результатов научной		знания	
	деятельности в устной и письменной	3	высокий уровень	
	форме		знания	
4.	основ теории поверхностных явлений, в	1	недостаточный уровень	
	том числе искусственно созданных		знания	
		2	достаточный уровень	
			знания	
		3	высокий уровень	
			знания	
5.	фундаментальных закономерностей,	1	недостаточный уровень	
	связанных с реконструкцией и		знания	
	реструктуризацией поверхности	2	достаточный уровень	
			знания	
		3	высокий уровень	
			знания	
6.	существующих методов и методических	1	недостаточный уровень	
	подходов в научных исследованиях в		знания	
	области поверхностных явлений и	2	достаточный уровень	
	возможных способов их развития		знания	
		3	высокий уровень	
			знания	
Умение				
1.	выбирать и применять соответствующие	1	не умеет	
	методики сканирующей зондовой	2	частично освоенное	
	микроскопии к конкретным объектам		умение	
		3	сформированное	
			умение	
2.	анализировать полученные	1	не умеет	
	экспериментальные данные, оценивать	2	частично освоенное	
	правильность полученных результатов		умение	
		<u> </u>	1 *	

		3	сформированное
			умение
	Владение		
1.	практическими навыками работы на	1	не владеет
	сканирующем туннельном и атомно-	2	частично освоенные
	силовом микроскопе		навыки
		3	сформированные
			навыки
2.	обработки полученных изображений	1	не владеет
	поверхности программными методами	2	частично освоенные
			навыки
		3	сформированные
			навыки
Итого баллов		20–30	«зачтено»
		менее	«не зачтено»
		20	

7. Перечень учебной литературы и ресурсов сети "Интернет", необходимых для освоения дисциплины

Основная литература

- 1. Ч. Киттель. Введение в физику твердого тела. М.: Наука, 1978.
- 2. Г. Владимиров: Физика поверхности твердых тел. Учебное пособие. М: Лань, 2016, 352 с.
- 3. М. Мамонова, В. Прудников, И. Прудникова. Физика поверхности. Теоретические модели и экспериментальные методы. Издательская фирма "Физикоматематическая литература", 2011, 401 с.

Дополнительная литература

- 1. Основы физической химии [Электронный ресурс] : учебное пособие : в 2 ч. Ч. 1 : Теория / Еремин В.В. и др. М.: БИНОМ. Лаборатория знаний, 2013. 320 с. http://e.lanbook.com/books/element.php?pl1_id=8695
- 2. Физическая химия: учеб. для студентов вузов, обучающихся по хим. спец. / А.Г. Стромберг, Д.П. Семченко; под ред. проф. А.Г. Стромберга. Москва: Высш. шк., 2006, 526 с.

Перечень ресурсов информационно-телекоммуникационной сети «интернет»

- I. НЕКОММЕРЧЕСКИЕ ЭЛЕКТРОННЫЕ БИБЛИОТЕЧНЫЕ СИСТЕМЫ (ЭБС) СВОБОДНОГО ДОСТУПА
- Научная электронная библиотека eLIBRARY.RU www.elibrary.ru

- Электронная библиотека «Научное наследие России» http://www.e-heritage.ru/index.html
- Научная электронная библиотека КиберЛенинка http://www.cyberleninka.ru/
- Полнотекстовая электронная библиотека РФФИ http://www.rfbr.ru/rffi/ru/library
- Электронная библиотека ИФТТ РАН http://www.issp.ac.ru/libcatm/elib.html
- Электронная библиотека международного научно-образовательного сайта EqWorld http://eqworld.ipmnet.ru/indexr.htm
- Библиотека международного издательства INTECHOPEN http://www.intechopen.com/

II. РЕФЕРАТИВНЫЕ БАЗЫ ДАННЫХ НАУЧНЫХ ИЗДАНИЙ И НАУЧНЫЕ ПОИСКОВЫЕ СИСТЕМЫ

- Российский индекс научного цитирования (РИНЦ) http://elibrary.ru/project_risc.asp
- Международная реферативная база по физике, астрономии, теории частиц ADS(NASA) http://adsabs.harvard.edu/
- Directory of Open Access Journals (DOAJ) http://www.doaj.org
- Directory of Open Access Books (DOAB) http://doabooks.org/
- ArXiv: Open access to 1,146,534 e-prints in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics (Электронный архив публикаций библиотеки Корнелльского университета) http://xxx.lanl.gov/archive
- Science Research Portal научно-поисковая система, осуществляющая полнотекстовый поиск в журналах многих крупных научных издательств, таких как Elsevier, Highwire, IEEE, Nature, Taylor & Francis и др., в открытых научных базах данных: Directory of Open Access Journals, Library of Congress Online Catalog, Science.gov и Scientific News http://www.scienceresearch.com

ІІІ. ЖУРНАЛЫ И КНИГИ

- Nature Communications http://www.nature.com/ncomms/index.html
- Physical Review X http://journals.aps.org/prx/
- Scientific Reports http://www.nature.com/srep/
- New Journal of Physics http://iopscience.iop.org/journal/1367-2630
- Журналы физико-технического института им А.Ф. Йоффе РАН: «Журнал технической физики», «Письма в журнал технической физики», «Физика твердого тела», «Физика и техника полупроводников» http://journals.ioffe.ru/
- Труды института общей физики им. А.М. Прохорова PAH http://www.gpi.ru/trudgpi.php
- Physics Books Free Computer Books http://www.freebookcentre.net/Physics/Physics-Books-Online.html
- List of Free Physics Books | Physics Database http://physicsdatabase.com/free-physics-book

IV. ОБРАЗОВАТЕЛЬНЫЕ И СПРАВОЧНЫЕ РЕСУРСЫ «ИНТЕРНЕТ»

- Российское магнитное общество http://www.amtc.ru/mago/
- European community of Magnetism http://magnetism.eu
- International Society of Magnetic Resonance https://www.weizmann.ac.il/ISMAR/education
- ETH Zurich group about EPR http://www.epr.ethz.ch
- Molecular magnetism http://www.molmag.de
- Magnetic Resonance Imaging http://www.magnetic-resonance.org
- Техническая библиотека http://techlibrary.ru/
- Библиотека Гумер. Гуманитарные науки. http://www.gumer.info/bibliotek_Buks/Pedagog/
- Федеральный портал «Российское образование» www.edu.ru
- Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/
- Специализированный портал по информационно-коммуникационным технологиям в образовании http://www.ict.edu.ru/
- Информационная справочно-правовая система «Консультант плюс» http://www.consultant.ru/ (некоммерческая версия)
- Справочно-информационный портал ГРАМОТА.РУ http://www.gramota.ru/

8. Описание материально-технической базы, необходимой для освоения дисциплины

Обучение по дисциплине ведётся с применением как традиционных методов (лекции, лабораторные работы), так и с использованием инновационных подходов: активное участие аспирантов в научных семинарах подразделений КФТИ – обособленного структурного подразделения ФИЦ КазНЦ РАН по профилю подготовки, представление докладов на научной конференции молодых ученых КФТИ — обособленного структурного подразделения ФИЦ КазНЦ РАН и молодежных научных школах, подготовка научных статей, подготовка презентаций по литературе для дополнительного изучения.

Аудиторные занятия, целью которых является освоение теоретических основ дисциплины, проводятся в интерактивной форме с использованием мультимедийного оборудования. Презентации позволяют качественно иллюстрировать практические занятия схемами, формулами, чертежами, рисунками. Кроме того, презентации позволяют четко структурировать материал занятия. Электронная презентация позволяет отобразить процессы в динамике, что позволяет улучшить восприятие материала.

В ходе лабораторных занятий аспирантам предоставляется возможность изучить специфику экспериментальных исследований поверхности с помощью методов сканирующей зондовой микроскопии, познакомится с принципами работы и

возможностями современной экспериментальной аппаратуры и оборудования, используемых при проведении научных исследований в области исследований поверхности, получить практические навыки интерпретации экспериментальных результатов.

Самостоятельная работа аспирантов подразумевает углубленное освоение теоретического материала, выполнение индивидуальных заданий, подготовку к текущему, промежуточному и итоговому контролю успеваемости. В целях формирования способности к критическому анализу информации и поиску путей решения поставленных задач в дальнейшей профессиональной деятельности проблемного обучения, требующая используется технология значительных временных ресурсов, что предусмотрено структурой дисциплины, и предполагает самостоятельную проработку учебно-проблемных задач аспирантами, выполняемую с привлечением основной и дополнительной литературы; поиск необходимой научно-технической информации в открытых источниках, консультации преподавателем.

Самостоятельная работа аспирантов осуществляется: в домашних условиях, в читальном зале библиотеки, на персональных рабочих местах аспирантов с доступом к ресурсам «Интернет», в научных подразделениях КФТИ – обособленного структурного подразделения ФИЦ КазНЦ РАН с доступом к лабораторному оборудованию и приборам.

Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим учебники, учебно-методические пособия, конспекты лекций, ресурсы «Интернет».

Материально-техническое обеспечение дисциплины:

- ▶ библиотека с читальным залом, книжный фонд которой составляет специализированная методическая и учебная литература, научная периодика;
- ➤ зал, оснащённый стационарным проектором, экраном и обычной доской для проведения лекционных занятий;
- учебная аудитория, оснащенная переносными проектором и экраном для проведения практических занятий;
- ➤ индивидуальные рабочие места аспирантов, оснащенные персональным компьютерами с доступом к сети «Интернет», локальной сети и электронной информационно-образовательной среде ФИЦ КазНЦ РАН.

В учебном процессе аспиранты используют современное научное оборудование профильных подразделений КФТИ – обособленного структурного подразделения ФИЦ КазНЦ РАН:

- Сканирующий зондовый микроскоп Solver P47;
- Сканирующий зондовый микроскоп Solver P47Pro;
- Электронный микроскоп Carl Zeiss;