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List of symbols

d	 spacing between adjacent grid points
f	 focal length of a lens
F	 general function
FOV	 field of view
f#	 f-number of a lens
facq	 acquisition frequency
Lsr	 spatial resolution length
∗Lsr	 spatial resolution length relative to the vector

spacing d
N	 number of measured variables; number of acquired 

samples
Neff	 effective number of independent samples

npix	 linear size (in pixels) of the PIV interrogation 
window

Ruu, Rvv, Rww	 Reynolds normal stresses
Ruu, true, Ruu, corr	 true/corrected Reynolds normal stress
Ruv	 Reynolds shear stress
T	 total recording time
TI	 turbulence intensity
Tint	 integral time scale
TKE	 turbulent kinetic energy
u	 horizontal velocity component
u	 mean velocity
u′	 fluctuating velocity
′utrue	 true fluctuating velocity (in absence of 

measurement errors)
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Abstract
This paper discusses the propagation of the instantaneous uncertainty of PIV measurements 
to statistical and instantaneous quantities of interest derived from the velocity field. The 
expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds 
stresses is derived. It is shown that the uncertainty of vorticity and velocity divergence requires 
the knowledge of the spatial correlation between the error of the x and y particle image 
displacement, which depends upon the measurement spatial resolution. The uncertainty of 
statistical quantities is often dominated by the random uncertainty due to the finite sample 
size and decreases with the square root of the effective number of independent samples. 
Monte Carlo simulations are conducted to assess the accuracy of the uncertainty propagation 
formulae. Furthermore, three experimental assessments are carried out. In the first experiment, 
a turntable is used to simulate a rigid rotation flow field. The estimated uncertainty of the 
vorticity is compared with the actual vorticity error root-mean-square, with differences 
between the two quantities within 5–10% for different interrogation window sizes and
overlap factors. A turbulent jet flow is investigated in the second experimental assessment. 
The reference velocity, which is used to compute the reference value of the instantaneous 
flow properties of interest, is obtained with an auxiliary PIV system, which features a 
higher dynamic range than the measurement system. Finally, the uncertainty quantification 
of statistical quantities is assessed via PIV measurements in a cavity flow. The comparison 
between estimated uncertainty and actual error demonstrates the accuracy of the proposed 
uncertainty propagation methodology.

Keywords: particle image velocimetry, uncertainty quantification, uncertainty propagation, 
linear error propagation, spatial resolution
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2

Ux	 uncertainty of the quantity x

Uu
2	 mean-square of the uncertainty of u

U
Uu

2	 uncertainty of the mean-square of the uncertainty 
of u

Uu
rms	 root-mean-square averaged uncertainty of u

v	 vertical velocity component
w	 spanwise velocity component
x	 measured variable; horizontal coordinate
x 	 mean value of the quantity x
y	 derived quantity of interest; vertical coordinate
Δt	 time interval between successive samples 

(inverse of the acquisition frequency)
δx	 measurement error of the quantity x
ρ(x,y), ρxy	 cross-correlation coefficient between x and y
ρ(a)	 cross-correlation coefficient between two 

samples at temporal or spatial separation a
σx	 standard deviation of x
σUu	 standard deviation of the uncertainty of u
σu,err

2 	 variance of u due to measurement errors

σu,fluct
2 	 variance of u due to physical flow fluctuations

σxy
2 	 covariance between x and y
σx

2	 variance of x
ω	 vorticity
ω0	 reference vorticity
ωz	 out-of-plane vorticity component

1.  Introduction

Uncertainty quantification in particle image velocimetry 
(PIV) is crucial to determine an interval that contains the mea-
surement error. Several a-posteriori PIV uncertainty quantifi-
cation methods have been recently proposed to estimate the 
unknown error for every velocity vector in the flow field.

In the ‘uncertainty surface’ method by Timmins et  al 
(2012), the recorded images are analyzed to quantify the mag-
nitude of relevant error sources (particle image size, particle 
density, displacements and shear). Comparing to previously 
computed errors using synthetic data leads to uncertainty 
estimation for every vector. The ‘peak ratio’ method by 
Charonko and Vlachos (2013) makes use of an empirical rela-
tion between uncertainty and the ratio between the highest and 
the second highest correlation peak. Further advances on the 
quantification of the measurement uncertainty based on the 
cross-correlation signal-to-noise ratio have been proposed by 
Xue et  al (2014). In the ‘image matching’ or ‘particle dis-
parity’ method by Sciacchitano et  al (2013), the measured 
displacement field is used to deform the recorded images, 
and the residual disparity in the position of matching particle 
images leads to an estimate of the uncertainty of the displace-
ment vector. Finally, the ‘correlation statistics’ method by 
Wieneke (2015) analyzes the contribution of all pixel intensi-
ties to a possible asymmetry of the correlation peak, which is 
related to the uncertainty of the displacement vector. All these 
methods allow the a-posteriori quantification of the instanta-
neous measurement uncertainty. A thorough comparison of 
their performances in different imaging and flow conditions 

is reported in Sciacchitano et al (2015), where the dedicated 
experimental data from Neal et al (2015) is used.

In many applications, PIV measurements are conducted 
to investigate flow properties derived from the velocity field, 
which can be instantaneous (e.g. vorticity, velocity diver-
gence, acceleration, turbulence dissipation rate, pressure) or 
statistical quantities (e.g. time average and Reynolds stresses). 
Therefore, once the uncertainties of the instantaneous velocity 
components are estimated, they need to be propagated into 
the derived quantities of interest. The quantification of the 
uncertainty of derived quantities relies upon the following 
considerations:

	 i.	the uncertainty of the velocity components propagates to 
that of the derived quantity of interest;

	 ii.	the correlation (in space, time and/or inter-component) 
of velocity components affects the uncertainty of derived 
quantities;

	 iii.	for statistical quantities, additional uncertainty is due 
to the finite number of samples N, which yields lack of 
statistical convergence.

The works of Wilson and Smith (2013a, 2013b) provide 
upper and lower uncertainty bounds for a number of statistical 
quantities, such as average, variance and covariance. In their 
analysis, the authors considered the contributions of random 
errors, mainly due to the finite sample size, and unknown 
time-dependent systematic errors. For velocity variance and 
covariance, the lower uncertainty bound was found to be larger 
than the upper uncertainty bound because spurious fluctua-
tions tend to elevate the time-averaged measured fluctuations, 
yielding an error in the negative direction. In the work pre-
sented here, uncertainty quantification is provided for many 
commonly used derived quantities in PIV processing, both 
statistical and instantaneous. Following Coleman and Steele 
(2009), we assume that each systematic error whose sign and 
magnitude are known has been removed by correction. Thus 
the paper focuses on random errors and uncertainties. The 
work discusses the basic concepts of uncertainty propagation 
and its applications for flow properties of interest in typical 
PIV measurements, such as vorticity, mean velocity and 
Reynolds stresses. Furthermore, a correction of the Reynolds 
stresses based on the magnitude of the noisy fluctuations is 
proposed.

2.  Uncertainty propagation methodology

2.1.  Basic concepts

Let us consider a derived quantity of interest y, which is a 
general function F of N measured variables xi, with i  =   
1, 2, …, N.

( )= …y F x x x, , , N1 2� (1)

Assuming that each variable xi has a standard deviation σxi, 
and given sufficient linearity of F, the variance of y can be 
approximated by the variance-covariance matrix of F (Bendat 
and Piersol 2010):

Meas. Sci. Technol. 27 (2016) 084006
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where ρ(xi, xj) is the cross-correlation coefficient between xi 
and xj, defined by:

( ) ( ) /ρ σ σ=x x x x, cov ,i j i j x xi j� (4)

Notice that when xi and xj are independent, then ρ(xi, xj)  =  0 
and equation (3) reduces to:

⎛
⎝
⎜

⎞
⎠
⎟∑σ σ=

∂
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F
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i

N

i
x

2

1

2
2

i
� (5)

Equation (3) can be interpreted in two ways. First, assuming 
that the set of input variables xi is measured many times, each 
time yielding an output variable yj, the standard deviation 
σy provides a measure of the fluctuation of the derived yj’s. 
Secondly, σy provides a measure of the uncertainty Uy of y for 
a single measurement given the standard uncertainties Uxi of 
each input variable xi (Coleman and Steele 2009):
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i i j

� (6)
where ρ(δxi, δxj) is now the cross-correlation coefficient 
between the errors of xi and xj, which are indicated with δxi 
and δxj, respectively. This equation will be used extensively in 
the following.

In the present work, the uncertainty of instantaneous 
velocity components is quantified with the correlation sta-
tistics method (Wieneke 2015). Equation  (6) shows that the 
evaluation of the uncertainty of y requires the knowledge of 
the cross-correlation between velocity vectors separated in 
time or space or inter-component. Most PIV-UQ methods 
are unable to compute such values from single interrogation 
windows. The values of ρ are usually determined before-
hand for a particular set of PIV processing parameter e.g. by 
Monte-Carlo simulation with synthetic data, similar to the 
uncertainty surface method by Timmins et al (2012), which 
analyses the local imaging and flow conditions and looks up 
the corresponding potentially skewed and biased error distri-
bution. Further details on the computation of the error spatial/
temporal correlation are given in next sections.

2.2. Time-averaged statistical quantities

Given a set of samples x  =  {x1, x2, …, xN} recorded over time, 
the temporal mean value, standard deviation and variance of x 
are defined as, respectively:

∑=
=

x
N

x
1

i

N

i
1

� (7)

( )∑σ =
−
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x x
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1
x

i
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Given two sets of samples x and y, the covariance cov(x, y) or 

σxy
2  between them is defined as:

( )( )∑σ =
−

− −
=N

x x y y
1

1xy
i

N

i i
2

1
� (10)

Notice that equations  (7)–(10) provide the mean, standard 
deviation and variance for the sample population. These 
values are estimates of the corresponding values for the parent 
population, which comprises the totality of all samples (not 
only those acquired during the measurement). The accuracy 
of the estimate increases for increasing N; the estimates are 
exact for N  →  ∞.

Assuming that the samples are independent and follow 
a normal distribution of standard deviation σx, the standard 
uncertainty of the above quantities is (Benedict and Gould 
1996):
Uncertainty of mean:

σ
=U

N
x

x
� (11)

Uncertainty of standard deviation:

( )
σ

=
−

σU
N2 1

x
x� (12)

Uncertainty of variance:

σ=
−σU

N

2

1x
2

x
2� (13)

Finally, the uncertainty of the covariance is (Bendat and 
Piersol 2010):

σ σ
ρ

=
+

−σU
N

1

1
x y

xy
2

xy
2� (14)

where ρxy is the cross-correlation coefficient between x and y.
These equations are valid for sufficiently large N. Ahn and 

Fessler (2003) report that for N  ⩾  30 these formulae are accu-
rate within 1%. For a smaller number of samples, the form
ulae typically underestimate the actual standard uncertainty 
by up to 10%, and correction factors should be used for the 
mean, standard deviation and variance to make them unbiased 
(Coleman and Steele 2009). The results of equations (11)–(14) 
will be used in the following for determining the uncertainty 
of statistical quantities of interest in turbulent flows.

2.2.1.  Uncertainty of the mean velocity.  Consider the generic 
velocity component u. Based on equations  (7) and (11), the 
uncertainty of the mean velocity u is:

Meas. Sci. Technol. 27 (2016) 084006
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σ
=U

N
u

u
� (15)

Analogous equations  are obtained for the v and w velocity 
components. In equation (15), systematic uncertainties due to 
spatial modulation errors or peak locking are not taken into 
account. The standard deviation σu contains both the true 
velocity fluctuations (σu, fluct) and the measurement errors  
(σu,err):

σ σ σ σ= + ≈ +Uu u u u u
2

, fluct
2

, err
2

, fluct
2 2� (16)

where Uu is the uncertainty of the instantaneous velocity 

component and Uu
2 is the mean-square of Uu. The right-hand-

side of equation (16) is obtained by considering that the error 

variance σu, err
2  is approximately equal to the uncertainty mean-

square Uu
2 for accurate uncertainty quantification methods 

(see appendix of Sciacchitano et al 2015).
When the samples are not independent, the parameter N of 

equation (15) must be substituted with the effective number of 
independent samples Neff, as discussed in section 2.2.3.

2.2.2.  Uncertainty of Reynolds stress.  The Reynolds stress 
plays a crucial role in turbulent flows because it represents 
the rate of mean momentum transfer by turbulent fluctuations.  
In this section, the expression of the uncertainty is derived for 
the Reynolds normal stress and for the Reynolds shear stress.

Reynolds normal stress.  The Reynolds normal stress for the 
x-velocity component u is defined as the variance of u:

( )∑′ σ= = =
−

−
=

R u
N

u u
1

1
uu u

i

N

i
2 2

1

2� (17)

where ′u  is the fluctuating part of u: = −′u u u. Due to its def-
inition, the uncertainty of Ruu is computed with equation (13):

σ σ=
−
≅ =U

N N
R

N

2

1

2 2
R u u uu

2 2
uu� (18)

It is assumed that the samples are statistically independent.  
If not, N must again be substituted with the effective number 
of independent samples Neff (section 2.2.3). As discussed in 
section 2.2.1, σu contains both the effects of true velocity fluc-
tuations and spurious fluctuations due to noise. The latter yield 
an over-estimate for Ruu with respect to the true value Ruu, true:

σ= + = +R R R Uuu uu u uu u,true ,err
2

,true
2� (19)

When the uncertainty of the measured velocity is known,  
a corrected (more accurate) estimate of Ruu can be retrieved by 

subtracting the spurious fluctuations mean square Uu
2from the 

measured Reynolds stress:

= −R R Uuu uu u,corr
2� (20)

Thus, according to equation  (6), the uncertainty of the cor-
rected normal Reynolds stress estimate Ruu, corr, indicated with 
URuu,corr, is given by:

= +U U UR R U

2 2
uu uu

u
,corr 2� (21)

The latter is composed by two components: (a) the uncer-
tainty of the measured Reynolds stress, which is given by 
equation (18); (b) the uncertainty of the spurious fluctuations 

mean square Uu
2. Notice that Uu

2 can only assume positive 

values, therefore its distribution is better approximated by a 
log-normal distribution rather than by a Gaussian distribution. 
At least when approximating the distribution with a Gaussian 
distribution with positive mean, an analytical expression of 

the uncertainty of Uu
2 can be derived using equation (6):

σ
σ

= ⋅ +U
N

U
U

2
1

2U U u
U

u

2

2u u

u
2� (22)

The accuracy of equation  (22) is assessed in section  3.1. 
Combining both equations  (18) and (22), the uncertainty of 
Ruu, corr is:

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

σ
σ

= + ⋅ + ⋅U R U
U N

2 1
2

2
R uu U u

U

u

2

2

2

2

uu u
u

,corr
� (23)

In many applications, the measurement error is small with 
respect to the actual velocity fluctuations, therefore the term 
within brackets is negligible and equation (23) reduces to:

= ⋅U R
N

2
R uuuu,corr� (24)

In practice, the uncertainty of the Reynolds normal stress 
according to (23) and (24) is often strongly underestimated 
for two reasons. First, the subtraction of equation (20) is sub-
ject to the accuracy of the uncertainty quantification method 
itself. As shown by Sciacchitano et al (2015), the uncertainty 
estimations of state-of-the-art UQ methods may deviate from 
the true errors by as much as a factor two for different flow 
and imaging conditions. Secondly, the finite spatial resolution 
of the PIV processing algorithm does not allow resolving fluc-
tuations of length scale smaller than about the interrogation 
window. This may lead to a substantial underestimation of Ruu 
depending on Reynolds number, turbulent level and imaging 
magnification.

It is important to remark here that the computation of the 
uncertainty of Ruu according to equation (18) does not require the 
knowledge of the uncertainty of the instantaneous velocity. On 
the other hand, in order to compute the corrected value Ruu, corr,  
the uncertainty of the instantaneous velocity must be known.

Turbulent kinetic energy.  The turbulent kinetic energy TKE 
is defined as half of the sum of the Reynolds normal stresses:

= = + +′ ′u u R R RTKE
1

2

1

2i i uu vv ww( )� (25)

Based on the error propagation formula (6), the uncertainty of 
the TKE is equal to:
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= + +U U U U
1

2 R R RTKE
2 2 2

uu vv ww� (26)

Assuming N � 1 and that the instantaneous measurement 
uncertainty is negligible with respect to the velocity fluctua-
tions, the result of equation (24) can be used and the expres-
sion of UTKE reduces to:

= + + ⋅U R R R
N

1

2uu vv wwTKE
2 2 2� (27)

When Rww is unknown (e.g. in planar PIV, which only pro-
vides two velocity components), its value can be estimated 
as ( )/= +R R R 2ww uu vv  under the assumption of isotropic 
turbulence.

Reynolds shear stress.  The Reynolds shear stress Ruv is 
defined as the covariance of the u and v velocity components:

∑ ∑

ρ σ σ

= =
−

=
−

− −

=

′ ′ ′ ′
= =

R u v
N

u v
N

u u v v
1

1

1

1
uv

i

N

i i
i

N

i i

uv u v

1 1
( )( )

�
(28)

The quantity ρuv is the cross-correlation coefficient between 
the velocity components u and v. Assuming that the velocity 
fluctuations are affected by error δu and δv, respectively, and 
that the error of the time-averaged velocity is negligible, equa-
tion (28) becomes:

∑

∑

∑

δ δ

δ δ δ δ

δ δ

ρ σ σ ρ

=
−

+ +

=
−

+ + +

=
−

+

= + ≅ +

′ ′

′ ′ ′ ′

′ ′

δ δ δ δ δ δ

=

=

=

R
N

u u v v

N
u v u v v u u v

N
u v u v

R R U U

1

1

1

1

1

1

uv
i

N

i i

i

N

i i i i

i

N

i i

uv u v u v uv u v u v

1
,true ,true

1
,true ,true ,true ,true

1
,true ,true

,true ,true
2 2

( )( )

( )

( )

�

(29)

In equation  (29), ρδuδv is the cross-correlation coefficient 
between the errors of the two velocity components. The 
true velocity fluctuations are assumed to be independent of 
the measurement errors, thus cancelling the cross-terms 

( )δ∑ ′= u vi
N

i1 ,true  and ( )δ∑ ′= v ui
N

i1 ,true . As a consequence, the 
Reynolds shear stress Ruv exhibits a systematic error (equal 

to ρδ δ U Uu v u v
2 2 ) only if δu and δv are correlated (ρδuδv  ≠  0); 

however, this is typically not the case for planar 2 C-PIV. 
Conversely, for stereo-PIV there may be non-zero inter- 
component correlations dependent on the experimental setup 
of the two cameras relative to the x- and y-axis. The uncer-
tainty of Ruv is obtained by applying the covariance uncer-
tainty equation (14):

σ σ
ρ

= ⋅
+

−
U

N

1

1
R u v

uv
2

uv
� (30)

The uncertainty of the Reynolds shear stress has a minimum 
value of /σ σ −N 1u v when u and v are uncorrelated and 

increases with higher correlation between the two velocity 
components.

2.2.3.  Effective number of independent samples.  Consider a 
generic statistical quantity, as the mean x . In this section we 
will show that if the N samples from which x  is computed are 
not independent, a larger uncertainty of x  is expected. In fact, 
from equation (6) it is obtained:

( )∑∑ ρ σ=
= =

U
N

x x
1

,x
i

N

j

N

i j x
2

1 1
2

2
� (31)

having assumed a constant underlying fluctuation distribution 
σ σ σ= =x x xi j . The auto-correlation coefficient ρ(xi, xj) can be 
written as:

( ) ( ) ( )ρ ρ ρ= = ∆+x x x x n t, ,i j i i n� (32)

with Δt the inverse of the sampling frequency. The auto-
correlation coefficient ρ is a function of the time separation 
nΔt between samples xi and xj  =  xi+n. As a result, equa-
tion (31) can be written as:

( ) ( )∑ ∑ ∑ ∑
σ

ρ
σ

ρ= = ∆
= = −

−

+
= = −

−

U
N

x x
N

n t,x
x

i

N

n i

N i

i i n
x

i

N

n i

N i
2

2

2
1 1

2

2
1 1

� (33)

The quantity ρ(nΔt) is equal to one for n  =  0 and decays to 
zero for increasing n. Furthermore, ρ(nΔt) is an even func-
tion: ρ(nΔt)  =  ρ(–nΔt). Assuming →∞N  and neglecting the 
edge effects in the summation, equation (33) becomes:

( ) ( )

( )

∑ ∑ ∑

∑

σ
ρ

σ
ρ

σ
ρ

= ∆ = ∆

=
∆

= =−∞

+∞

=−∞

+∞

=−∞

+∞

U
N

n t
N

N n t

n t

N

x
x

i

N

n

x

n

x
n

2
2

2
1

2

2

2

� (34)

Defining the effective number of independent samples as:

( )∑ ρ
=

∆
=−∞

+∞N
N

n t
n

eff
� (35)

leads to:

σ σ
= =U

N
U

N
or x

x
x

x2
2

eff eff
� (36)

Typically, the summation of equation (35) is stopped when the 
correlation value reaches zero for the first time. Notice that 
when the samples are uncorrelated, then ρ(nΔt) is 1 for n  =  0 
and zero otherwise, so in this case Neff  =  N. Conversely, when 
the samples are correlated then ( )ρ∑ ∆ >=−∞

+∞ n t 1n ; therefore 
Neff is smaller than N, thus the uncertainty of the mean value 
is larger.

The integral time scale Tint is defined as the integral of the 
auto-correlation function ρ(t) of the time series x(t) (George 
et al 1978):

( )∫ ρ=
∞

T t tdint
0

� (37)
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Tint is a measure of the time interval over which x(t) is depen-
dent on itself. For time intervals large compared to Tint, x(t) 
becomes statistically independent of itself. Then, the effective 
number of independent samples can be written as a function 
of the observation time T and the integral time scale Tint:

∫ ∫

∑ ∑ρ ρ

ρ ρ

=
∆
=

⋅ ∆

∆ ⋅ ∆

≈ = =

=−∞

+∞

=−∞

+∞

−∞

+∞ +∞

N
N

n t

N t

n t t

T

t t

T

t t

T

Td d 2 d d 2

n n

eff

0

int

( ) ( )

( ) ( )

�

(38)

The relevance of equations  (36) and (38) for experimental 
measurements in turbulent flows is discussed by Tennekes 
and Lumley (1972) among others. The equations  illustrate 
the fact that, when Δt  <  Tint and the total observation time T  
is fixed, increasing the sampling frequency and therefore 
the number of samples does not improve the accuracy of 
the derived statistical quantities (Taylor 1997), because the 
effective number of independent samples stays constant. 
Instead, it is advantageous to limit the sampling frequency to 
1/(2Tint) and increase the recording time T.

2.3.  Instantaneous quantities

2.3.1.  Uncertainty of vorticity.  Let us consider a planar-PIV 
measurement where the velocity components (u, v) are mea-
sured in a 2D domain. The out-of-plane vorticity component 
is defined as:

ω =
∂
∂
−
∂
∂

v

x

u

y
z� (39)

For sake of brevity, we will drop the subscript z in the 
reminder and we will indicate the out-of-pane vorticity comp
onent simply with ω. The velocity components u and v are 
discrete functions, defined at grid points with uniform spacing 
d (both in x- and y-direction). As an example, the vorticity can 
be computed by the central-difference scheme by:

( ) [ ( ) ( ) ( )

( )]

ω = + − − − +

+ −

x y
d

v x d y v x d y u x y d

u x y d

,
1

2
, , ,

,
�

(40)

Other methods using larger kernel sizes are available at the 
expense of lower spatial resolution of the vorticity field. Using 
the error propagation formula (6), the uncertainty of the vor-
ticity at grid point (x, y) is (apart from truncation errors):

[ ( ) ( ) ]

[ ( )] ( )

ρ ρ

ρ

= + + + − −

= − +

ω ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

U
d

U U U U d U d U

d
d U U

1

2
2 2 2 2

2
1

2
1 2

v v u u v u

u v

2
2

2 2 2 2 2 2

2
2 2

�

(41)

where the following assumptions have been made:

	 i.	The errors of u and v at the same or neighboring spatial 
locations are uncorrelated (2C-PIV).

	 ii.	The errors of u(x, y  +  d ) and u(x, y  −  d ) are spatially 
correlated (and similarly the errors of v(x  +  d, y) and 
v(x  −  d, y)). The corresponding cross-correlation coeffi-
cient, indicated with ρ(2d ), is assumed to be the same for 
the two velocity components. It represents the normalized 
cross-correlation of the measurement error at two grid 
points at spatial separation 2d.

	 iii.	The uncertainty of u(x, y  +  d ) is assumed to be equal to 
the uncertainty of u(x, y  −  d ) and is indicated with Uu. 
Likewise, the uncertainty of v(x  +  d, y) is assumed to be 
equal to the uncertainty of v(x  −  d, y) and is indicated 
with Uv. In practice, an appropriate local average of 
uncertainties can be taken.

If we further assume that the two velocity components 
have the same uncertainty (Uu  =  Uv  =  U), the expression of 
the uncertainty of the vorticity simplifies to:

( )ρ= −ωU
U

d
d1 2� (42)

Equation (42) shows the proportionality between the uncer-
tainties of vorticity and velocity. The grid spacing d has a 
twofold effect on Uω: on the one hand, Uω is inversely pro-
portional to d, which would cause a reduction of Uω when d is 
increased. On the other hand, increasing d yields a reduction of 
the spatial cross-correlation coefficient and in turn an increase 
of the square-root term. When the interrogation window 
overlap is increased, d tends to zero faster than ( )ρ− d1 2 : 
as a consequence, the uncertainty of the vorticity increases 
(see figure 1). However, two things should be kept in mind: 
(a) equation (42) accounts only for the random errors of the 
vorticity and not for the truncation errors, which are system-
atic and decrease when increasing the interrogation window 
overlap; (b) the uncertainty of the vorticity can be reduced by 
computing the spatial derivatives using a larger spacing in the 
finite differences (e.g. using [ ( ) ( )] /+ − −v x d y v x d y d2 , 2 , 4
instead of [ ( ) ( )] /+ − −v x d y v x d y d, , 2  ). For noisy data, 
Vollmers (2001) reports that lower uncertainty can be 
achieved by computing the vorticity from the flow circula-
tion, rather than via equations  (39) and (40). Linear error 
propagation can be used to evaluate the uncertainty of the 
vorticity calculated with advanced algorithms; the determina-
tion and analysis of that uncertainty goes beyond the scope of 
the present paper.

It can be shown that equation (42) also corresponds to the 
uncertainty of the 2D divergence of the velocity. Conversely, 
for 3D divergence in tomographic PIV, the following expres-
sion of the uncertainty is derived:

[ ( )]ρ= −U
U

d
d

3

2
1 2div� (43)

The above derivations can be modified accordingly when the 
central-difference scheme is replaced by more elaborate func-
tions, e.g. fitting flow derivatives by a Levenberg–Marquardt 
algorithm on a 3  ×  3 or 5  ×  5 vector kernel size. For stereo-
PIV with non-zero correlations between u and v, additional 
terms must be taken into account in the above equations. 
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Stereo-PIV uncertainty quantification including assessment 
of calibration errors will be subject of future work.

2.3.2.  Spatially averaged quantities.  When a velocity comp
onent is spatially averaged over a profile, region or volume, 
the uncertainty of the average could be computed either by 
equation  (11) using the fluctuations of the velocity vectors, 
or, alternatively, by considering the mean as a simple function 
and propagating the individual velocity uncertainties accord-
ing to equation  (6). Usually the second option is preferred, 
since the mean should be considered here as an instantaneous 
quantity and not as a statistically converged value. Most often, 
the underlying mean and standard deviation will be anyway 
different at different spatial locations. Only in the case of 
averaging over isotropic homogeneous turbulence with suffi-
cient data points one could try to measure turbulent statistical 
values; even in this case, it would be more accurate to record a 
large number of images over time for unbiased statistics.

The derivation of the uncertainty of the mean is done in 
the same way as in equations  (31)–(36), replacing standard 
deviations with uncertainties, and replacing temporal correla-
tion of velocity components with the spatial correlation of the 
velocity errors, which are closely related to the spatial resolu-
tion of the PIV processing scheme.

Consider the 1D-case with N values of the u velocity comp
onent averaged along a profile in x-direction:

∑=
=

u
N

u
1

i

N

i
1

� (44)

According to equation (6), the uncertainty of the mean is:

( ) ( )∑∑ ∑∑ρ δ δ ρ δ δ= ≈
= = = =

U
N

u u U U
N

u u U
1

,
1

,u
i

N

j

N

i j u u
i

N

j

N

i j u
2

1 1
2

1 1
2

2
i j

� (45)

where, for simplification, the product of individual uncer-
tainties U Uu ui j is substituted by the mean square uncertainty 

Uu
2. The spatial auto-correlation coefficients ρ(δui, δuj) can be 

written as a function of the vector grid spacing d:

( ) ( ) ( )ρ δ δ ρ ρ= | − | =u u j i d nd,i j� (46)

where n is the number of grid points between locations i and 
j. Neglecting edge effects, i.e. requiring large N, equation (45) 
leads to:

∑ ∑ ∑

∑

ρ ρ

ρ

= =

=

= =−∞
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=−∞
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=−∞
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N
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N
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(47)

Again, an effective number of independent samples can be 
defined as:

( )∑ ρ
=

=−∞

+∞N
N

nd
n

eff
� (48)

thus:

=U
U

N
u

u
rms

eff
� (49)

having defined the root-mean-square averaged uncertainty 

=U Uu u
rms 2 .
The integral of the auto-correlation coefficients can be 

defined as the spatial resolution Lsr of the PIV algorithm, 
which in pixel units is:

( )∫ ρ=
−∞

+∞
L x xdsr� (50)

The spatial resolution can also be written relative to the vector 
spacing d:

( )
( )

∫
∑

ρ
ρ= ≈∗ −∞

+∞

=−∞

+∞

L
x x

d
nd

d

n
sr

� (51)

Figure 1.  Uncertainty of the vorticity as a function of the 
interrogation window overlap. Results for interrogation window of 
size 32  ×  32 px2.

Figure 2.  Spatial auto-correlation of the measurement error for 
interrogation window of 32  ×  32 pixels and 75% overlap.
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In the 2D-case, when the average is conducted over a region of 
Nx  ×  Ny vectors, equation (48) becomes:

= ∗N
N N

L

x y
eff

sr
2� (52)

with ∗Lsr again in units of vector spacing and assuming the 
same spatial resolution in x and y. This is, for example, not the 
case for advanced locally adaptive PIV schemes with elon-
gated windows e.g. adjusting to boundaries. For a single-pass 
PIV processing scheme with a square interrogation window 
of npix  ×  npix pixel, the correlation function ρ(x) is the triangle 

function ( )−1
x

npix
 for |x|  ⩽  npix, and 0 otherwise. Hence, 

the spatial resolution is simply Lsr  =  npix. For a Gaussian 
weighted interrogation window with a standard deviation 
of σ, it can be shown that the spatial resolution is equal to 

πσ=L 4sr . For state-of-the-art PIV algorithms using multi-
pass window deformation (like DaVis 8), it has been found 
that the correlation function—when approximating the PIV 

algorithm as a linear spatial filter function—is Gaussian with 
some Mexican hat contribution leading to slight overshooting 
for steep velocity step functions as observed by Elsinga and 
Westerweel (2011). A detailed analysis is beyond the scope 
of this work.

In practice, the correlation coefficients and spatial resolu-
tion need to be specified for a particular set of PIV processing 
parameters. When the averaging process is conducted with 
a small number of vectors over a region comparable to the 
spatial resolution, the simplifying assumptions that led to 
equation (49) are not valid anymore. In this case, the uncer-
tainty of the spatial mean must be computed via equation (6), 
where all individual correlation coefficients must be taken into 
account.

2.3.3.  Spatial correlation of the measurement error.  The errors 
of neighboring vectors are spatially correlated due to the inter-
rogation window overlap. To investigate the spatial correlation 
of the error, a Monte Carlo simulation is conducted considering 

Figure 3.  Comparison between the results of Monte Carlo simulations (MC) and uncertainty propagation (UP) for the uncertainty of mean, 
standard deviation (Std), variance (Var) and mean square. Left: uncertainty as a function of the sample size. Right: uncertainty as a function 
of the sample standard deviation. For mean and standard deviation, the relative uncertainty is computed dividing the absolute uncertainty by 
σx; for variance and mean square, it is computed dividing the absolute uncertainty by x

2σ . The symbol keys apply to both plots.

Figure 4.  Instantaneous horizontal velocity (left) and vorticity fields (right) for the case U  =  0.1 px and ρ  =  0.45.
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a null displacement field. The images have a resolution of 
5000  ×  400 pixels, with a seeding concentration of 0.05 ppp. 
The particle images have a Gaussian intensity profile with 
peak intensity of 1024 counts; their diameter is set to 2 pixels. 
Noise is added to the recordings (white background noise with 
5 counts standard deviation and photon shot noise, assuming a 
conversion factor of 4 electrons per count) to cause errors in the 

measured velocity. The images are processed with the commer-
cial software DaVis 8.2 from LaVision. The auto-correlation 
function ρ of the measurement error is computed to investigate 
the spatial correlation among neighboring vectors. The results 
of figure 2, which refer to the case of Gaussian-weighted inter-
rogation window size of 32  ×  32 pixels with 75% overlap, 
show that a significant correlation is present up to sample spac-
ing of 3d. Notice that in this case ρ(2d)  ≅  0.45; hence, the spa-
tial correlation of the error is relevant and cannot be neglected 
for the computation of the uncertainty of the vorticity via equa-
tion (42). Note that the above mentioned mixture of Gaussian 
and Mexican hat filter function of PIV leads here to the slight 
undershooting of the correlation values below zero.

3.  Numerical assessment via Monte Carlo 
simulations

3.1.  Uncertainty of statistical quantities

The uncertainty of mean, standard deviation, variance and 
mean square is verified by Monte Carlo simulations. For each 
sample size N, normally distributed random data are gener-
ated with =x 1 and σx  =  0.3, and the statistical quantities of 
interest are computed. The procedure is repeated 1000 times 
to evaluate the standard deviation of the mean, standard devi-
ation, variance and mean square. The results of the Monte 
Carlo simulations are compared with the theoretical predic-
tions of equations (11)–(13) and (22). Figure 3(left) shows the 
uncertainty as a function of the sample size N: as predicted by 
the theoretical uncertainty propagation equations, the uncer-
tainty decreases with 1/ N . The agreement between theor
etical values and Monte Carlo simulation is excellent. The 
simulation is repeated with constant sample size N  =  10 0000 
and varying the sample standard deviation σx (figure 3(right)). 
The uncertainty of mean, standard deviation and mean square 
increases linearly with /σ xx  in the range [0, 1]. Conversely, 

Figure 5.  Uncertainty of the vorticity as a function of the 
uncertainty of the velocity. Comparison between Monte Carlo 
simulation results (MC) and uncertainty propagation (UP).

Figure 6.  Auto-correlation functions of the three signals. Mean 
values out of 1000 simulations.

Table 1.  Integral time scale and effective number of independent 
samples for the three signals.

Signal
Total number 
of samples N

Integral time 
scale Tint

Effective number 
of samples Neff

x1 10 000 0.50 10 000
x2 10 000 1.69 2950
x3 10 000 6.74 742

Figure 7.  Uncertainty of the mean value (relative to the standard 
deviation) as a function of the effective number of samples Neff. 
Comparison between Monte Carlo simulation results (MC) and 
theoretical uncertainty propagation (UP).
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the uncertainty of the variance features a quadratic increase 
according to equation (13).

3.2.  Uncertainty of vorticity

A Monte Carlo simulation is conducted to assess the accuracy 
of the uncertainty estimate given by equation  (42). A null 
velocity field (u  =  0, v  =  0) is considered on a 2D domain 
composed by 1000  ×  100 grid points, yielding a null exact 
vorticity field ω  =  0; thus any measured vorticity directly 
provides the true error. The grid spacing is set to d  =  8 px, 
which is the typical value obtained with 32  ×  32 px interro-
gation windows with 75% overlap. Gaussian noise is added 
to the velocity field to simulate the error encountered in PIV 
measurements. The noise is spatially correlated to simulate 

the effect of interrogation window overlap in PIV. The stan-
dard deviation of the noise, which coincides with the measure-
ment uncertainty U, is varied between 0.02 px and 0.3 px.  
Three values of the cross-correlation coefficient ρ(2d ) are 
considered, namely 0, 0.11, 0.45. These values are representa-
tive of the cross-correlation coefficient encountered in PIV for 
overlap factors of 0%, 50% and 75%. The results are averaged 
(via root-mean-square) in the entire measurement domain and 
for a total number of 1000 velocity fields for each value of 
ρ. An example of instantaneous horizontal velocity field and 
vorticity field is shown in figure 4.

The results of figure  5 show the excellent agreement 
between the uncertainty obtained with Monte Carlo simula-
tions and with the theoretical uncertainty propagation (equa-
tion (42)). As predicted, the uncertainty of the vorticity 

Figure 8.  (a) Raw image of the turntable; (b) Measured instantaneous vorticity field with velocity vectors. For sake of clarity, one of 4 
vectors is displayed both in x- and y-direction; (c) Root-mean-square of the actual error of the x-displacement; (d) Root-mean-square of the 
uncertainty of the x-displacement computed with the correlation statistics method; (e) Standard deviation of the actual error of the vorticity; 
(f) Root-mean-square of the uncertainty of the vorticity, estimated with equation (42).
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increases linearly with the uncertainty of the velocity. It is also 
noticed that the spatial correlation of the measurement error 
(ρ  =  0.45) yields a reduction by factor 5 of Uω with respect to 
the case where the error is uncorrelated (ρ  =  0).

3.3.  Effective number of independent samples

The influence of the effective number of independent samples 
on the accuracy of the statistical results in investigated by 
Monte Carlo simulations. Three signals are considered, each 
composed by N  =  10 000 samples and having actual mean and 
standard deviation equal to 1.0 and 0.3, respectively. Signal 
x1 is composed by statistically independent samples, whereas 
the samples of signals x2 and x3 are statistically dependent. 
The integral time scale of the signals is evaluated from the 
auto-correlation function (ρ1, ρ2 and ρ3, respectively) via 
equation (37) (see figure 6). The effective number of indepen-
dent samples is then computed via equation (38) and reported 
in table 1. For each signal, the mean value is computed. The 
simulation is repeated 1000 times to compute the standard 
deviation of the estimated mean. The latter is compared with 
the theoretical prediction of equation  (15). The results of 
figure 7 show the excellent agreement between Monte Carlo 
simulation and theoretical prediction: the uncertainty of the 
mean decreases with / N1 eff , even if the total number of sam-
ples N is the same for the three signals.

4.  Experimental assessment

4.1. Turntable experiment

The first experimental validation has been conducted using a 
turntable with a diameter of 30 cm rotating at constant speed. 
A printed pattern with small particles (size of about 200 μm) 
is applied onto the turn table to simulate flow tracer particles. 

Images were acquired with a PCO Dimax S4 camera (CMOS 
sensor, 2016  ×  2016 pixel resolution, 11 μm pixel pitch,  
12 bit, maximum 1279 frames per second at full resolu-
tion), see figure  8(a). The camera mounted a Nikkor lens 
with 28 mm focal length and the f-number was set to 4.0. The 
camera was placed at about 1 m distance from the turntable, 
resulting in a magnification factor of 0.027. A diffusor was 
mounted between camera and lens to blur the image in order 
to suppress peak locking errors. The acquisition frequency is 
1 kHz with an area of interest of 980  ×  1080 pixels. The illu-
mination was provided by an LED light source. The rotational 
speed of the turntable was set to 37 rpm (0.61 Hz), yielding a 
uniform vorticity ω0  =  0.007 58 px/px. Since the exact vor-
ticity is known, the difference between measured and exact 
value yields the error of the vorticity. The latter quantity is 
compared with the uncertainty estimated by the linear propa-
gation (equation (42)).

The images were processed with the LaVision DaVis 8.2 
software, using 32  ×  32 pixels interrogation window and 
75% overlap factor. An instantaneous vorticity field with the 
velocity vectors is shown in figure 8(b). The root-mean-square 
of the error of the x-displacement and the standard deviation 
of the error of the vorticity are shown in figures 8(c) and (e), 
respectively: both errors are lower in the bottom part of the 
field of view and increase in the top part due to a reduction 
of the illumination intensity. The uncertainty of the meas-
ured displacement was quantified via the correlation statistics 
approach (Wieneke 2015). It is verified that the uncertainty 
Uv of the vertical displacement component (not shown here) 
is comparable with Uu. The uncertainty of the vorticity is 
retrieved from the displacement uncertainty via equation (42), 
using U  =  (Uu  +  Uv)/2 and ρ(2d )  =  0.45. Figures  8(d) and 
(f ) show the root-mean-square of the uncertainty of displace-
ment and vorticity, respectively: both results agree very well 
with the statistical true error (figures 8(c) and (e)) and repro-
duce the increase of uncertainty from bottom to top of the field 
of view.

The measurements were repeated for different overlap 
factors (0%, 25%, 50% and 75%) and interrogation window 
sizes of 16  ×  16 and 32  ×  32 px. The uncertainty of the 
vorticity computed via equation (42) was averaged in space 

Figure 9.  Comparison between true vorticity error and uncertainty 
propagation (UP) result. Root-mean-square in time over 200 
velocity fields and space in the rectangular region x  ∈  [291; 594] 
px, y ∈ [732; 941] px.

Table 2.  Parameters of the rectangular jet experiment.

Seeding Glycol-water droplets, 1 μm diameter
Illumination Photonics Industries DM40-527 laser
Recording device MS: LaVision HighSpeedStar 5 

CMOS camera
HDR: 2  ×  LaVision HighSpeedStar 6 
CMOS camera

Imaging MS: Nikon objective, f  =  105 mm, 
f#  =  4
HDR: Nikon objectives, f  =  105 mm, 
f#  =  5.6

Field of view MS: 69.3  ×  69.3 mm2

HDR: 22.8  ×  22.8 mm2

Acquisition frequency 10 000 Hz
Magnification factor MS: 0.126; HDR: 0.449
Number of images 8000
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and time over the entire set of 200 fields and compared with 
the root-mean-square of the vorticity error. The results of 
the comparison are illustrated in figure  9. The agreement 
between uncertainty propagation from equation  (42) and 
true uncertainty (stemming from the actual error of the vorti-
city) is very good. Figure 9 shows that the uncertainty of the 
vorticity increases with reducing the interrogation window 
size, because less information carriers are contained in a 
smaller window. Furthermore, the uncertainty increases 
with the overlap factor, because a smaller grid spacing d 
results in larger uncertainty of the vorticity according to 
equation (42). However, it is important to notice that high 
overlap factors lead to higher spatial resolution of the 
vorticity field (smaller d ), thus in general to less trunca-
tion errors and higher peak vorticity levels at the expense 
of higher noise.

4.2. Turbulent flow

The uncertainty propagation methodology is applied to two PIV 
measurements of a turbulent flow. The first one is the rectan-
gular jet flow described in Neal et al (2015). The peculiarity of 
the database is that two PIV measurement systems were used, 
namely the measurement system (MS) and the high-dynamic 
range system (HDR). The latter is composed by two cameras in 

stereoscopic configuration and features a magnification factor 
larger by factor 3. Via comparison with hot-wire measurements, 
Neal et al (2015) showed that the HDR system yields more accu-
rate results by about factor 4 with respect to the MS. As a conse-
quence, the HDR velocity can be used as a reference to retrieve 
the error of the MS data. The parameters of the experiment 
are reported in table 2. The measurements were conducted at  
x/h  =  20, being x the streamwise direction and h the jet height, 
where the turbulent flow is in the turbulent regime.

The MS images were processed with LaVision DaVis 8.2 
with 16  ×  16 pixels interrogation window with Gaussian 
window weighting and 75% overlap factor. For the HDR 
images, 48  ×  48 pixels interrogation windows with Gaussian 
weighting and 75% overlap factor were selected. Notice 
that, due to the difference in optical magnification factor, 
the different interrogation windows yielded approximately 
the same spatial resolution for the two systems. The HDR 
velocity fields were finally mapped onto the MS coordi-
nate system. The time-average velocity field and the turbu-

lence intensity, defined as ( )/σ σ= +TI 2u v
2 2 , are shown in 

figure 10: the turbulence intensity is about 12% of the time-

average velocity.
The second experiment is a PIV measurement over a cavity 

flow. The experiment is conducted in the M-tunnel, a low-
speed open-jet open-return wind tunnel of the Aerodynamics 
Laboratories of TU Delft. The wind tunnel has a squared test 
section of 40  ×  40 cm2. The cavity model is made out of wood 
and has height H  =  2 cm and spanwise dimension W  =  40 cm. 
The length of the cavity is L  =  24 cm. The free-stream velocity 
is set to 5 m s−1, yielding a Reynolds number ReH  =  6500 
based on the cavity height. A series of 2000 uncorrelated image 
pairs are acquired at acquisition frequency facq  =  8.3 Hz.  
The field of view, which is 70  ×  55 mm2, is positioned 3 H 
downstream of the beginning of the cavity. The resulting mag-
nification factor is 0.093. The parameters of the cavity flow 
experiment are reported in table 3. A sketch of the cavity flow 

Figure 10.  Left: time-average velocity field. For sake of clarity, one every eight vectors is shown in the horizontal direction, one every two 
in the vertical direction. Right: turbulence intensity.

Table 3.  Parameters of the cavity flow experiment.

Seeding Glycol-water droplets, 1 μm diameter
Illumination Quantel Evergreen Nd:YAG Laser  

(200 mJ @ 15 Hz)
Recording device LaVision Imager LX 2MPx
Imaging f  =  75 mm, f#  =  3.9
Field of view 70  ×  55 mm2

Acquisition frequency 8.33 Hz
Magnification factor 0.093
Number of images 2000
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experiment is shown in figure 11. Further details of the experi-
ment are reported in Iannetta et al (2016).

4.2.1.  Uncertainty of the vorticity.  To assess the uncertainty 
of the vorticity, the rectangular jet data are used. The velocity 
time series is extracted at a point P  =  (398, 246) as shown 
in figure 10. Figure 12 shows a portion of the time series for 
a time interval of 10 ms. The comparison between MS and 
HDR data on the entire time series yields the error for the 
MS reported in table  4. It is noticed that: (a) the two error 
components δu and δv have comparable magnitude; (b) the 
random component of the error (error standard deviation) is 
significantly larger than the mean bias component.

The vorticity is computed with the central-difference 
scheme of equation (40), with grid spacing d  =  4 px. The vor-
ticity time series for the first 10 ms is shown in figure 13. Both 

HDR and MS yield the same peak vorticity (ωmax  =  – 0.15 px/
px at t  =  2.2 ms), which confirms that the two systems have 
the same spatial resolution. The vorticity error δω is computed 
as the difference between MS and HDR vorticity. The results 
of table 4 show that the random error dominates over the mean 
bias error.

Figure 11.  Sketch of the cavity flow experiment.

Figure 12.  Longitudinal (left) and transverse (right) velocity time series at point P.

Table 4.  Actual error and estimated uncertainty at P.

Mean  
error

Error 
standard 
deviation

Error  
root-mean-
square (rms)

Uncertainty 
rms

u-component 
(px)

–0.005 0.060 0.060 0.063

v-component 
(px)

–0.021 0.060 0.063 0.064

Vorticity  
(px/px)

0.0008 0.0104 0.0104 0.0116

Figure 13.  Comparison between MS and HDR vorticity time series 
at P.
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The uncertainty at P is evaluated with the correlation statis-
tics method (Wieneke 2015). Uncertainty propagation is done 
according to equation (42) using d  =  4 px, U  =  (Uu  +  Uv)/2 
and ρ(2d )  =  0.45. The root-mean-square of the uncertainty 
is equal to Uu,rms  =  0.063 px and Uv,rms  =  0.064 px, which 
agrees very well with the error root-mean-square of 0.060 and 
0.063, respectively. The calculation is repeated in the entire 
measurement domain in common between HDR and MS. 
The contours of figure 14 illustrate the comparison between 
the rms of the error and the uncertainty of the vorticity. Both 
uncertainty and error exhibit small variations within the con-
sidered domain, with values between 0.010 and 0.016 px/px. 
Again, the agreement between estimated uncertainty and error 
is very good.

4.2.2.  Uncertainty of statistical quantities.  The time-resolved 
jet data are not suited for statistical analysis because the low 
effective number of independent samples (Neff  =243, despite 
the total number of samples is N  =  8000) does not guarantee 
the statistical convergence of the results. Hence, to assess the 

uncertainty of statistical flow properties, the cavity flow data 
are used, where 2000 statistically independent velocity field 
are available.

Velocity data are extracted at a point P located close to 
the reattachment point; the turbulence intensity in P is equal 
to 22.0% of the free-stream velocity. The entire set of 2000 
samples is divided into 100 independent subsets composed 
by 20 samples each. The statistical flow properties, namely 
time averages and Reynolds stresses, are computed from 
the subsets and compared with the value obtained with the 
entire set. Figure  15(left) shows the comparison between 
the time-averaged vertical velocity computed with the sub-
sets of 20 samples and that evaluated from the entire set 
of 2000 samples. The uncertainty bars are evaluated with 
equation  (15) and correspond to a theoretical confidence 
level of 68%. In most of the cases the results agree within 
the uncertainty of the measured mean velocity. To assess 
the accuracy of the uncertainty propagation formulae, the 
uncertainty coverage for different statistical quantities is 
computed and displayed in figure 15(right). The uncertainty 

Figure 14.  Comparison between root-mean-square of the vorticity error (left) and root-mean-square of the estimated vorticity uncertainty 
(right).

Figure 15.  Left: comparison between time-averaged vertical velocity obtained with the subsets of 20 samples and that computed with 
the entire set of 2000 samples. For sake of clarity, only the first 20 subsets (out of 100) are shown. The uncertainty bars are evaluated at 
68% confidence level with the corresponding uncertainty propagation formula. The uncertainty of the reference value is displayed with a 
dashed black line. Right: uncertainty coverage for different statistical quantities. The theoretical uncertainty coverage for Gaussian error 
distribution is 68%.
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coverage is defined as the number of samples for which 
the error is smaller than or equal to the estimated uncer-
tainty. In case of Gaussian error distribution, the theor
etical uncertainty coverage is about 68%. The results of 
figure 15(right) show the accuracy of the uncertainty prop-
agation methodology: the uncertainty of the time-averaged 
quantities (u and v) is accurate within 5%, whereas that of 
the Reynolds stresses is accurate within 10%.

The effect of the number of samples on the accuracy of 
the statistical results is shown in figure 16. It is evident that 
the random uncertainty of the mean (figure 16(a)) is ini-
tially large and decreases with increasing sample size. In the 
entire range of sample sizes considered, the reference mean 
velocity is within the uncertainty bounds estimated with 
equation (15). Similarly, the normal Reynolds stress Rvv conv
erges to the reference value with rate / N1  (figure 16(b)).  
For low sample size (N  <  250), the measured Rvv over-
estimates the reference value due to the effect of spu-
rious fluctuations by about 10%. A corrected value of Rvv 

is computed by subtracting the mean-square fluctuation:  
Rvv,corr  =  Rvv–U rms

2 . The uncertainty of uncorrected and 
corrected Rvv is computed via equations  (18) and (23), 
respectively. The two uncertainties are the same within 1%, 
meaning that the uncertainty of Rvv is mainly due to sta-
tistical convergence rather than to the measurement uncer-
tainty of u and v. For a correction of less than 1%, one 
would need at least 20 000 independent samples according 
to equation  (24) before the uncertainty of the Reynolds 
stress decreases to the same level as the correction term 
U rms

2 . But a correction is nevertheless useful for low levels 
of Reynolds stress comparable to the uncertainties.

The Reynolds shear stress Ruv is illustrated in figure 16(c). 
To compute the uncertainty URuv, the cross-correlation coef-
ficient between u and v is calculated: ρuv  =  0.41. The meas-
ured Ruv converges to the reference value with rate / N1 .  
As the estimated uncertainty, also the measurement error (dif-
ference between measured and reference value) decreases 
with increasing the sample size.

Figure 16.  (a) Convergence of the mean vertical velocity as a function of the sample size. (b) Convergence of the Reynolds normal stress 
as a function of the sample size. (c) Convergence of the Reynolds shear stress as a function of the sample size. In all plots, the uncertainty 
bars are evaluated at 68% confidence level with the corresponding uncertainty propagation formula. The uncertainty of the reference value 
is displayed with a dashed black line.

Meas. Sci. Technol. 27 (2016) 084006



A Sciacchitano and B Wieneke﻿

16

5.  Conclusions

The present study proposes a mathematical framework for the 
propagation of the instantaneous measurement uncertainty 
to derived quantities of interest, either instantaneous (e.g. 
velocity derivatives, vorticity, divergence) or statistical (mean, 
Reynolds stresses, TKE). The framework relies upon the use 
of linear error propagation.

For statistical quantities, the uncertainty is typically domi-
nated by random errors due to the finite sample size. The 
uncertainty decreases with / N1 eff , being Neff the effective 
number of independent samples. It is noticed that, in many 
PIV experiments conducted in continuous rate mode, Neff may 
be significantly lower than the total number of samples N, thus 
yielding an uncertainty of statistical quantities larger than that 
obtained when the samples are statistically independent. The 
quantification of the uncertainty of statistical quantities does 
not require the knowledge of the uncertainty of the instanta-
neous velocity fields. Nevertheless, the instantaneous uncer-
tainty allows correcting the normal Reynolds stress for the 
spurious fluctuations due to random errors. In fact, in absence 
of systematic errors due to peak locking or spatial modula-
tion, the random errors have the effect to increase the meas-
ured normal Reynolds stress with respect to the actual one. 
The uncertainty of velocity spatial derivatives (e.g. vorticity 
and divergence) depends upon the spatial correlation of the 
measurement error along x- and y-directions. The latter is 
related to the measurement spatial resolution, which can be 
evaluated from the sum of the error spatial auto-correlation 
values. Although the error correlation is typically unknown 
in an experiment, it can be estimated a priori by Monte Carlo 
simulations for a given set of PIV processing parameters.

The proposed uncertainty propagation methodology is 
assessed via both Monte Carlo simulations and experiments. 
The Monte Carlo simulations showed the accuracy of the esti-
mated uncertainty for varying testing conditions (sample size, 
signal variance, error correlation) under the assumption of 
Gaussian error distribution of the velocity. In the experimental 
assessment, the reference velocity is either known (turn-
table experiment) or estimated with an auxiliary PIV system 
featuring a higher dynamic range (turbulent flow experiment), 
as done in Neal et al (2015), or evaluated with a much larger 
sample size for statistical convergence. From the experimental 
assessment, three main conclusions can be drawn:

	 i.	When the spatial correlation of the error is correctly taken 
into account, the uncertainty of the vorticity is estimated 
typically within 5–10% accuracy.

	 ii.	When the actual flow fluctuations are larger than the 
instantaneous uncertainties, the uncertainty of statistical 
quantities is dominated by the finite sample size rather 
than the random instantaneous uncertainties.

	 iii.	the uncertainty of the time-averaged quantities (u and 
v) is accurate within 5%, whereas that of the Reynolds 
stresses is accurate within 10%.
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