

«Генетические технологии для промышленной микробиологии и зеленой химии: экспрессионные платформы, продуценты ферментов и промышленно важных соединений» Соглашение № 075-15-2025-471 от «29» мая 2025 г (вн. № 15.ИП.25.03)

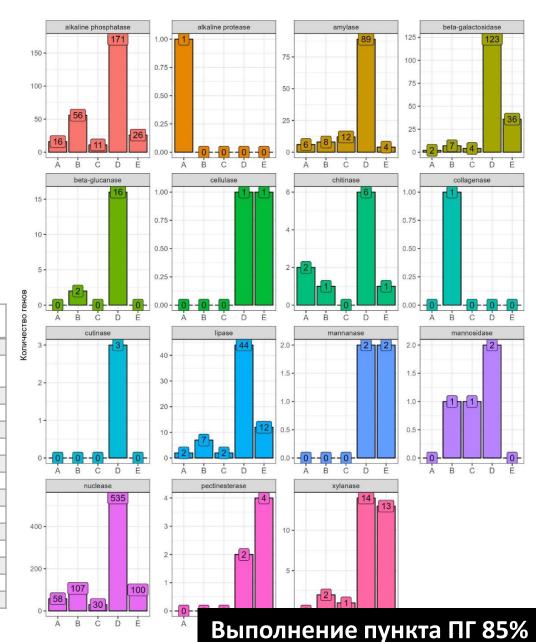
Ш.3. Валидов, PhD

зав. лаб. молекулярно-генетических и микробиологических методов

ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КАЗАНСКИЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ АКАДЕМИИ НАУК»

Цель проекта:

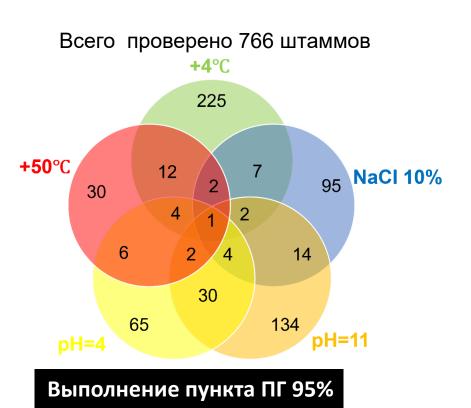
• Создание технологической системы (конвейера) для выявления, клонирования, экспрессии структурных генов промышленно важных ферментов из метагеномных последовательностей и отдельных штаммов с целью получения штаммов-продуцентов.


1.2.1 Изучение метагеномов микроорганизмов в том числе из экстремальных местообитаний, выявление структурных генов промышленно важных ферментов.

Была выделена и отсеквенирована методом ONT тотальная ДНК следующих образцов:

- Осадочные отложения горячих источников Камчатки (6 проб)
- Осадочные отложения сточных вод (5 проб)
- Донные отложения сероводородных водоемов (3 пробы)
- Чернозем Башкирии (1 проба)
- Почва из Вьетнама (1 проба)

После обработки полученных данных проводился поиск генов потенциально промышленно ценных ферментов, результаты приведены в таблице и на графике. Всего обнаружено 1547 генов ценных ферментов


Целевой ген	Башкирская почва - А	Сероводородные источники - В	Почва Вьетнам - С			Всего
nuclease	58	107	30	535	100	830
alkaline	16	56	11	171	26	
phosphatase						280
beta-galactosidase	2	7	4	123	36	172
amylase	6	8	12	89	4	119
lipase	2	7	2	44	12	67
xylanase	0	2	1	14	13	30
beta-glucanase	0	2	0	16	0	18
chitinase	2	1	0	6	1	10
pectinesterase	0	0	0	2	4	6
mannanase	0	0	0	2	2	4
mannosidase	0	1	1	2	0	4
cutinase	0	0	0	3	0	3
cellulase	0	0	0	1	1	2
alkaline protease	rotease 1 0		0 0		0	1
collagenase	0	1	0	0	0	1



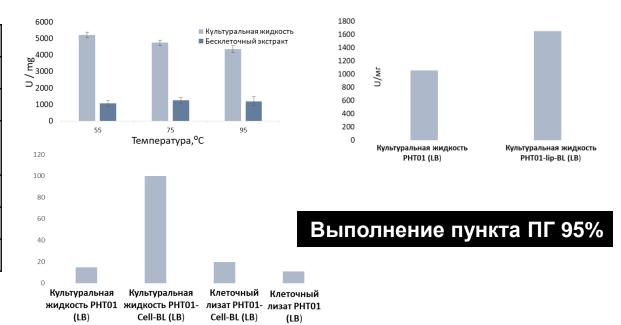
1.2.2 Скрининг имеющейся коллекции микроорганизмов на рост в экстремальных условиях. Отбор штаммов - кандидатов для клонирования и изучения экзоферментов.

Цель работы — скрининг имеющейся коллекции микроорганизмов на рост в экстремальных условиях.

В процессе работы проводился высев бактерий, которые были секвенированы по 16S, получение чистых культур, если образцы были контаминированы. Затем перезакладка музея и проверка роста мироорганизмов в экстремальных условиях (температурные, рН, высокая солёность среды)

Выводы:

Микроорганизмы, растущие при экстремальных условиях, могут находиться в обычной почве.


Микроорганизмы могут показывать рост при наличие разных стрессорах.

Порядка 100 штаммов могут иметь научный и практический интерес как источник экономически важных ферментов.

1.2.3 Клонирование потенциальных генов полезных ферментов (в том числе возможных протеаз, целлюлаз, липаз, амилаз, хитиназ и т.д.) из штаммов коллекции лаборатории молекулярно-генетических и микробиологических методов, способных расти в экстремальных условиях.

Гены промышленно важных ферментов : амилазы (aa-BL), липазы (lip-BL) и целлюлазы (cel-BL) были идентифицированы в геноме термофильного организма *Bacillus lichenifomis* (был выделен из осадков сточных вод, нагреваемых до 70 градусов)

Конструкции	Хост – система	Особенности
pET28a: aa-BL	E. coli BL21(DE3)	6 His-Tag, IPTG-индукция
pET28a: lip-BL	E. coli BL21(DE3)	6 His-Tag, IPTG-индукция
pET28a: cel- BL	E. coli BL21(DE3)	6 His-Tag, IPTG-индукция
pHT01: aa-BL	B. subtilis 168	Секреция, 6 His-Tag, IPTG-индукция
pHT01: lip-BL	B. subtilis 168	Секреция, 6 His-Tag, IPTG-индукция
pHT01: cel-BL	B. subtilis 168	Секреция, 6 His-Tag, IPTG-индукция

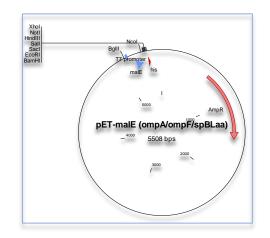
1.2.4 Оптимизация и разработка векторных систем для эффективной экспрессии генов и продукции ферментов в клетках *E.coli* и *Pseudomonas putida*.

Конструирование векторов для секреции белков (E.coli)

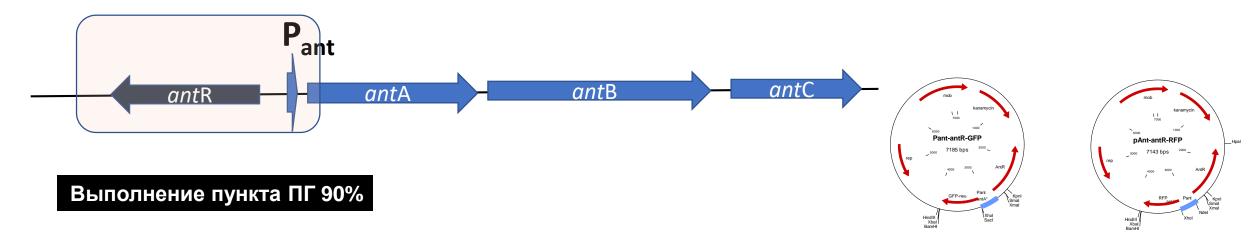
OmpF (outer-membrane protein F)

MalE (maltose-binding protein)

OmpA (outer-membrane protein A)


Aa-BL (amylase)

MMKRNILAVIVPALLVAGTANA


MKIKTGARILALSALTTMMFSASALA

MKKTAIAIAVALAGFATVAQA

MKQQKRLYARLLPLLFALIFLLPH<u>SAAA</u>

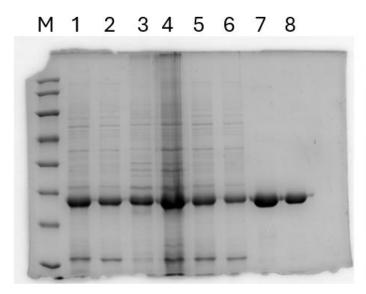
Векторы с репрессором/ промотером антранилатного оперона antR-P_{ant}-antABC (Pseudomonas aeruginosa).

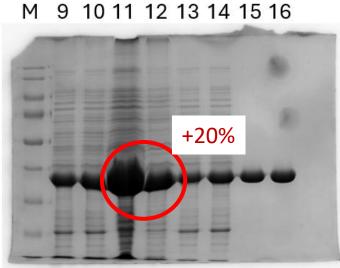
Поиск новых Ori-репликации в структуре природных плазмид.

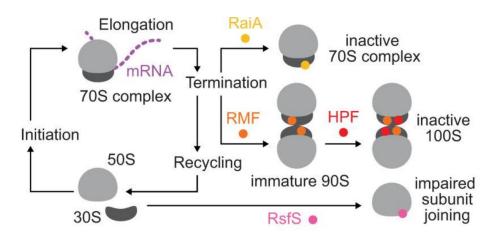
Pseudomonas stuttzeri содержит природную плазмиду, около 15 тыс пар оснований.

Тест на совместимость с основными Ori-репликации в клетках *E.coli*

Ori	Совместимость
ColE1(derivative)	да
pUC	да
ColE1	да
p15A	да
pBR322	да
oriV(pBBR1)	да


Проведение работ по определению минимального размера фрагмента содержащего Огі репликации. Проверка коньюгативного переноса. Проверка возможности репликации вектора в других системах (*B.subtilis? C.glutamicum?*) Конструирование вектора для экспрессии.


1.2.5 Разработка штаммов-платформ на основе штамма *Pseudomonas putida* для создания оптимальных продуцентов ферментов.


Штаммы: *P. putida* LN6160, LN6163, LN6166, LN6167

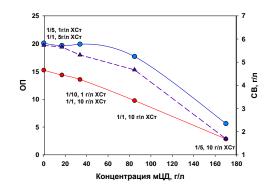
Генетическая конструкция: pJeM2:gld

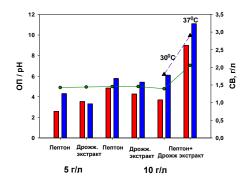
Белок: глицеролдегидрогеназа ≈ 39 кДа (Eschecrichia coli LJ110)

Штамм	Количество белка на 1 г клеток, мг			
LN6160	7.245			
LN6163 (Δ <i>rsfS)</i>	8.54			
LN6166 (Δ <i>yfiA)</i>	7.63			
LN6167 (Δ <i>rsfS,</i> Δ <i>yfiA)</i>	7.201			

Выполнение пункта ПГ 95%

1.2.6 Оценка физиологических показателей и биокаталитической активности штаммов бактерий *C. glutamicum*, оптимизация условий культивирования.

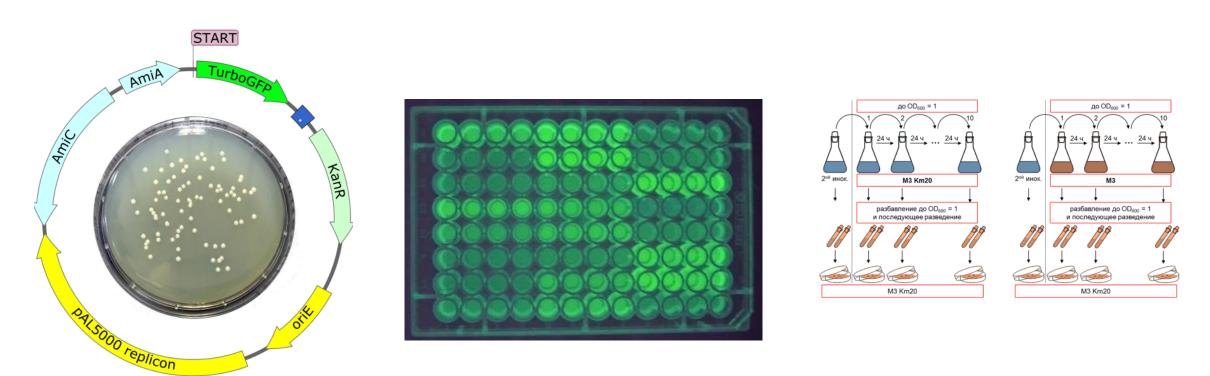

Выявлена активность в отношении тестостерона и 17α-ОН-прогестерона


Выполнены анализ роста и оптимизация условий культивирования бактерий *C. glutamicum* DSM 20300T в биотрансформационных условиях

Изучено влияние на рост:

- Источников С и N
- рН и буферной емкости сред

- Солюбилизаторов
- Растворителей
- Стероидных соединений
- Аэрации
- Температуры
- Индукторов и модуляторов



Выполнение пункта ПГ 95%

1.2.7 Разработка векторных плазмидных конструкций, несущих промоторные и репликативные элементы актинобактерий. Анализ репликативной стабильности и промоторной активности в клетках трансформированных актинобактерий.

Сконструированы новые экспрессионные векторы, выполнен анализ их стабильности и активности используемых промоторов в клетках актинобактерий

1.2.8 Выделение, полногеномное секвенирование, определение условий хранения штаммов молочнокислых бактерий и их оптимизация для процессов виноделия (ООО «Ферментра»).

Lactiplantibacillus plantarum Аналог препарата MLPrime

Sequence(s):Length: 2936668

Count: 84 GC: 46.4

N50: 106625

N ratio: 0.0

coding density: 85.2

Штамм	Среда культивирования	Температура хранения, °С	Примечание	КОЕ 1д	КОЕ 5д	КОЕ 16д	КОЕ 30д	КОЕ 60д
	MRSbroth (коммерческая)	+4	Без изменений	1*109	1*10 ⁹	2*10 ⁹	1,4*108	
		+25		4,1*10 ⁸	1,4*10 ⁸	<10 ⁵	<10 ²	
		+4	Культура после концентрирования и разбавления свежей средой	7*10 ⁹	9*10 ⁸	1,1*10 ⁹	6,3*10 ⁸	
MGMM		+25		6*10 ⁹	5*10 ⁸	<10 ⁵	<10²	
126	FVTbroth (на основе гидролизата древесины)	+4	Без изменений	1,6*10 ¹⁰	1,3*10 ⁹	1*10 ⁹	2,9*10 ⁷	
		+25		9,9*108	6,4*10 ⁸	1*10 ⁸	5,8*10 ⁷	
		+4	Культура после концентрирования и разбавления свежей средой	8*10 ⁹	1,3*10 ⁹	1,5*10 ⁸	4,4*10 ⁶	
		+25		3,8*10 ⁹	9*10 ⁸	1*10 ⁵	<10³	

Annotation:

tRNAs: 54

tmRNAs: 1

rRNAs: 3

ncRNAs: 6

ncRNA regions: 24

CRISPR arrays: 0

CDSs: 2806

pseudogenes: 13

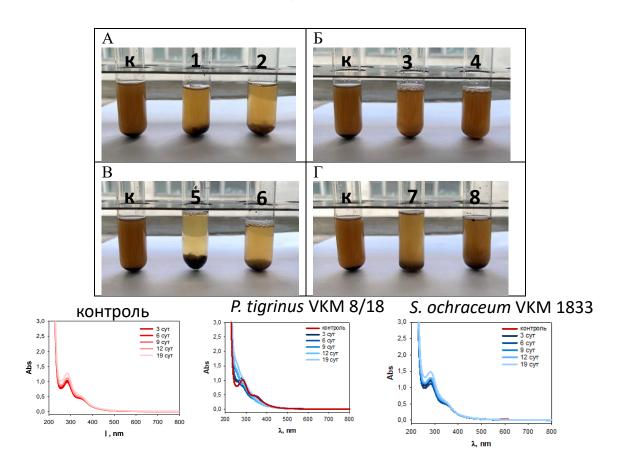
hypotheticals: 206

signal peptides: 0

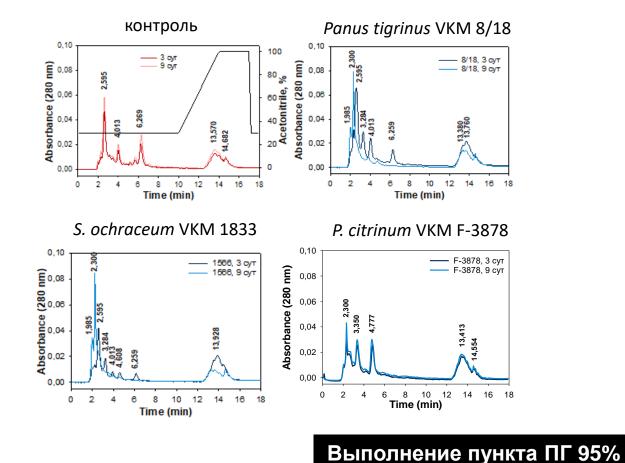
sORFs: 4

gaps: 11

oriCs: 2


oriVs: 0

oriTs: 0



1.2.9 Скрининг микроорганизмов (ВКМ РАН и лабораторная коллекция), способных трансформировать лигнин и его производные с образованием промышленно ценных соединений. Оптимизация условий культивирования отобранных культур, оценка ферментативной активности (АО «ОРГХИМ).

Проведен скрининг 86 штаммов коллекции ВКМ для выявления деструкторов лигнина

Определение продуктов деградации лигнина в условиях глубинного культивирования

- 1.3.1 Разработка и проведение обучения по программе повышения квалификации и переподготовки кадров: «Молекулярное клонирование, гетерологическая экспрессия генов и анализ белковых молекул».
- С соисполнителем по образовательной части Казанским Аграрным Университетом заключен договор на проведение курсов повышения квалификации по теме ««Молекулярное клонирование, гетерологическая экспрессия генов и анализ белковых молекул».
- Разработана программа повышения квалификации
- Курсы будут проводиться с 10 ноября по 24 ноября
- В настоящее время завершается набор слушателей из трех федеральных округов: Приволжского, Северо-Западного и Центрального округа.

Публикации

- Необходимо выпустить <u>3</u> публикации
- 1 статья опубликована

- 1 статья подана в журнал Biomolecules
- 1 статья подготовлена для публикации

Article

Specific Phenylpropanoid Oligomerization in a Neutral Environment by the Recombinant Alkaline Laccase from *Paramyrothecium roridum* VKM F-3565

Zhanna V. Renfeld ^{1,†}, Alexey M. Chernykh ^{1,†}, Sofia Yu. Gorina ¹, Boris P. Baskunov ¹, Olga V. Moiseeva ¹, Natalia V. Trachtmann ², Shamil Z. Validov ² and Marina P. Kolomytseva ^{1,*}

- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Prosp. Nauki 5, Pushchino 142290, Moscow Region, Russia
- ² Federal Research Center, Kazan Scientific Center of Russian Academy of Science, ul. Lobachevskogo, 2/31, Kazan 420111, Tatarstan Republic, Russia; sh.validov@knc.ru (S.Z.V.)

Предпосылки проекта и обеспечение сырьем:

- У Доступность сырья в непосредственной близости к производственной площадки АО «СЛХЗ»;
- ✓ Отсутствует квалифицированное использование порубочных остатков в настоящее время, использование в качестве сырья для древесных пеллет недостаточно;

- ✓ Запросы от текущих клиентов шинников на разработку технологических добавок из возобновляемого сырья, увеличение доли возобновляемого сырья в шине;
- ✓ Потребность в производных целлюлозы на российском рынке;
- ✓ Наличие существенных свободных мощностей по энергетике и площадей на территории АО «СЛХЗ», дешевая электроэнергия;
- √ Разработка технологий биотрансформации важна для переработки лигнина (35% от входящего сырья) в ценную продукцию.

Риски:

- ✓ Снижение переработки древесины в Красноярском крае снижение доступности и увеличение стоимости порубочных остатков (сырья для проекта);
- У Создание альтернативных предприятий по переработке порубочных остатков на территории Лесосибирска.

Рыночная привлекательность идеи:

- ✓ Производство высокомаржинальных продуктов из условно-бесплатного сырья
- ✓ Работа на известных рынках Биохимического холдинга «Оргхим»

Предпосылки проекта и обеспечение сырьем:

- ✓ Создание отечественных аналогов является прямой задачей в рамках Доктрины продовольственной безопасности РФ
- ✓ Снижение зависимости от иностранных поставщиков минимизирует риски срыва производственных циклов
- ✓ Проект соответствует целям Стратегии развития биотехнологической промышленности в РФ
- ✓ Рост потребительского спроса на продукты с пробиотическими свойствами
- ✓ Потребность в создании новых видов ферментированных продуктов и напитков с уникальными органолептическими свойствами (вкус, аромат, текстура)
- ✓ Разработка ротационных схем из отечественных штаммов, нечувствительных к распространенным в России бактериофагам.

Риски:

- ✓ Длительные сроки разработки, подтверждения качества и эффективности, и регистрации решений (биопрепаратов)
- ✓ Создание альтернативных предприятий по производству заквасок для виноделия и молочной продукции.

Рыночная привлекательность идеи:

- ✓ Высокомаржинальная продукция, составляющая небольшую долю в конечной стоимости продукта
- ✓ Замещение зарубежных заквасок по требованиям рынка отечественными аналогами в числе первых на рынке

В результате работы над проектом уже расширен ассортимент лактобактерий для нужд отечественного виноделия в портфеле компании Ферментра. Новая позиция - бактерия рода Oenococcus, обладающая устойчивостью к более сложным условиям яблочно-молочного брожения, такие как низкий рН и высокое содержание спирта (до 15%).

Риски невыполнения проекта в 2025 году

- Научные риски:
- Все научные пункты плана-графика выполнены на 90-95%
- Курс повышения квалификации подготовлен, в ноябре будет проведен и завершен.
- Задачи, выполняемые индустриальными партнерами завершены на 90-95%.
- Статьи 1 из 3 опубликована (1 подана
- Риски индустриальных партнеров несущественные

Спасибо за внимание