Приложение 11 УТВЕРЖДЕНО приказом ФИЦ КазНЦ РАН 22.04.2019 № 17-A

Разработано и рекомендовано к утверждению Ученым советом ИММ – обособленного структурного подразделения ФИЦ КазНЦ РАН 14 марта 2019 г., протокол № 3

РАБОЧАЯ ПРОГРАММА ФАКУЛЬТАТИВНОЙ ДИСЦИПЛИНЫ

«Математическое моделирование, численные методы»

Уровень высшего образования Подготовка кадров высшей квалификации Направление подготовки

01.06.01 МАТЕМАТИКА И МЕХАНИКА

Направленность подготовки:

Механика деформируемого твердого тела (01.02.04)

Механика жидкости, газа и плазмы (01.02.05)

Квалификация выпускника:

Исследователь. Преподаватель-исследователь

Содержание

- 1. Виды учебной деятельности, способ и формы ее проведения, трудоемкость дисциплины.
 - 2. Перечень планируемых результатов обучения.
 - 3. Место дисциплины в структуре образовательной программы.
 - 4. Учебно-тематический план занятий.
 - 5. Содержание дисциплины.
 - 6. Формы текущего контроля и промежуточной аттестации, критерии оценки.
- 7. Перечень учебной литературы и ресурсов сети "Интернет", необходимых для освоения дисциплины.
- 8. Описание материально-технической базы, необходимой для освоения дисциплины.

1. Виды учебной деятельности, способ и формы ее проведения, трудоемкость дисциплины

Виды учебной деятельности: аудиторные занятия – 1 зачетная единиц труда (36 часов), самостоятельная работа – 4 зачетные единицы труда (144 часа), всего – 5 зачетных единиц труда (180 часов).

Форма проведения аудиторных занятий – лекции, консультации.

В рамках часов самостоятельной работы по указанию преподавателя аспиранты прорабатывают темы и осваивают теоретические вопросы, излагаемые в лекционном курсе, а также самостоятельно изучают другие вопросы программы.

Формой итогового контроля является зачет.

2. Перечень планируемых результатов обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

2.1 Универсальные компетенции:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки (УК-2);
- ▶ способностью планировать и решать задачи собственного профессионального и личностного развития (УК-5).

2.2 Обще-профессиональные компетенции:

➤ способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационнокоммуникационных технологий (ОПК-1).

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Математическое моделирование, численные методы» является факультативной дисциплиной основной профессиональной образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре по направлению подготовки 01.06.01 Математика и механика, направленностей Механика деформируемого твердого тела (01.02.04) и Механика жидкости, газа и плазмы (01.02.05). Обучение проводится на втором курсе. Дисциплина направлена на углубление и расширение научно-теоретических и прикладных знаний обучающихся.

В результате освоения дисциплины аспирант должен получить дополнительные знания, умения и навыки. Аспирант должен:

Знать:

- > основные методы математического моделирования и численных методов;
- **у** текущее состояние современных научных достижений в области математического моделирования.

Уметь:

- применять полученные теоретические знания для решения новых практических задач;
- генерировать новые идеи при решении исследовательских и практических задач.

Владеть:

- ▶ навыками обработки информации и математического анализа полученных данных;
- практическими навыками построения математических моделей реальных залач.

4. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН ЗАНЯТИЙ

Наименование разделов и тем	лекции	сам. работа	Всего часов	
4.1. Математические основы моделирования	24	96	120	
Тема 1. Элементы теории функций и функционального анализа.	4	16	20	
Тема 2. Численные методы и их применение в научных исследованиях	4	20		
Тема 3. Экстремальные задачи, области применения.	4	16	20	
Тема 4. Элементы теории вероятностей и математической статистики. Применение методов математической статистики при решении научных задач.	8	32	20	
Тема 5. Теория принятия решений.	4	16	20	
4.2. Методы математического моделирования	12	48	60	
Тема 6. Основные принципы математического моделирования.	4	16	20	
Тема 7. Методы исследования математических моделей.	4	16	20	
Тема 8. Математические модели в научных исследованиях	4	16	20	
ВСЕГО	36	144	180	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Раздел 1. Математические основы моделирования

Тема 1. Элементы теории функций и функционального анализа.

Понятие меры и интеграла Лебега. Метрические и нормированные пространства. Пространства интегрируемых функций. Линейные непрерывные функционалы. Линейные операторы. Элементы спектральной теории. Дифференциальные и интегральные операторы.

Тема 2. Численные методы и их применение в научных исследованиях.

Интерполяция и аппроксимация функциональных зависимостей, примеры решения научно-практических задач. Численное дифференцирование и интегрирование. Численные методы поиска экстремума. Вычислительные методы линейной алгебры. Численные методы решения систем дифференциальных уравнений. Преобразования Фурье, Лапласа, Хаара, вейвлет-преобразование, примеры применения методов. Численные методы вейвлет-анализа.

Тема 3. Экстремальные задачи, области применения.

Экстремальные задачи в евклидовых пространствах. Математическое программирование, линейное программирование, выпуклое программирование. Задачи на минимакс. Области применения.

Тема 4. Элементы теории вероятностей и математической статистики.

Применение методов математической статистики при решении научных задач.

Аксиоматика теории вероятностей. Вероятность, условная вероятность. Независимость. Случайные величины и векторы. Элементы корреляционной теории случайных векторов. Элементы теории случайных процессов. Точечное и интервальное оценивание параметров распределения. Элементы теории проверки статистических гипотез. Элементы многомерного статистического анализа. Основные понятия теории статистических решений. Основы теории информации.

Регрессионный анализ, основные подходы и области применения. Класс моделей авторегрессии-проинтегрированного скользящего среднего. Диагностические проверки авторегрессионных моделей на примере реальных временных рядов.

Статистические гипотезы: основные понятия, ошибки 1- и 2-го рода, шаги проверки гипотез, вывод о принятии или отвержении основной гипотезы. Критерии проверки статистических гипотез: t-критерий Стьюдента, F-критерий Фишера, хи-квадрат Пирсона.

Тема 5. Теория принятия решений.

Общая проблема решения. Функция потерь метод максимального правдоподобия. Байесовский и минимаксный подходы. Метод последовательного принятия решения.

Раздел 2. Методы математического моделирования

Тема 6. Основные принципы математического моделирования.

Методы построения математических моделей на основе фундаментальных законов природы. Элементарные математические модели в механике, гидродинамике, электродинамике. Универсальность математических моделей. Вариационные принципы построения математических моделей.

Тема 7. Методы исследования математических моделей.

Методы исследования математических моделей. Устойчивость. Проверка адекватности математических моделей. Методы системного анализа для исследования математических моделей сложных объектов и систем.

Методы диагностических проверок стохастических моделей: введение избыточных параметров, совокупный критерий согласия, кумулятивная периодограмма. Методы системного анализа для исследования моделей объектов в условиях неполной априорной определенности. Методы системного анализа для изучения существенно нестационарных объектов и систем.

Тема 8. Математические модели в научных исследованиях.

Математические модели в статистической механике, экономике, биологии, геофизике. Методы математического моделирования измерительно-вычислительных систем.

Модели динамических систем. Особые точки. Бифуркации. Динамический хаос. Эргодичность и перемешивание. Понятие о самоорганизации. Диссипативные структуры. Режимы с обострением.

6. ФОРМЫ ТЕКУЩЕГО И ИТОГОВОГО КОНТРОЛЯ

Текущий контроль освоения дисциплины проводится регулярно, начиная со второй недели обучения, в форме контроля посещаемости, устного опроса по изучаемой теме.

Формой итогового контроля по дисциплине является зачет. Зачет проводится по вопросам.

Вопросы к зачету:

- 1. Понятие меры и интеграла Лебега.
- 2. Метрические и нормированные пространства.
- 3. Пространства интегрируемых функций.
- 4. Линейные непрерывные функционалы.
- 5. Линейные операторы.
- 6. Элементы спектральной теории.
- 7. Дифференциальные и интегральные операторы.
- 8. Экстремальные задачи в евклидовых пространствах.
- 9. Математическое программирование.
- 10. Линейное программирование.

- 11. Выпуклое программирование.
- 12. Минимаксный подход.
- 13. Метод апостериорного риска.
- 14. Задачи на минимакс.
- 15. Аксиоматика теории вероятностей.
- 16. Вероятность, условная вероятность.
- 17. Независимость. Случайные векторы и величины.
- 18. Элементы корреляционной теории случайных векторов.
- 19. Элементы теории случайных процессов.
- 20. Точечное и интервальное оценивание параметров распределения.
- 21. Элементы проверки теории статистических решений.
- 22. Основы теории информации.
- 23. Общая проблема решения. Байесовский и минимаксные подходы.
- 24. Метод последовательного принятия решения.
- 25. Интерполяция и аппроксимация функциональных зависимостей.
- 26. Численное дифференцирование и интегрирование.
- 27. Численные методы поиска экстремуме.
- 28. Вычислительные методы линейной алгебры.
- 29. Численные методы решения систем дифференциальных уравнений.
- 30. Плайн-аппроксимация, интерполяция, метод коечных элементов.
- 31. Преобразования Фурье, Лапласа, Хаара и др.
- 32. Численные методы вейвлет-анализа.
- 33. Элементарные математические модели в механике. Гидродинамике, электродинамике. Универсальность математических моделей.
- 34. Методы построения математических моделей на основе фундаментальных законов природы.
- 35. Вариационные принципы построения математических моделей.
- 36. Методы исследования математических моделей
- 37. Устойчивость. Проверка адекватности математических моделей.
- 38. Математические модели в статической механике, экономике, биологии.
- 39. Модели динамических систем. особые точки.
- 40. Бифуркации. Динамический хаос.
- 41. Эргодичность и перемешивание.
- 42. Понятие о самоорганизации. Диссипативные структуры.

Критерии оценки итогового контроля:

«зачтено»	Вопрос раскрыт, основные идеи и подходы изложены							
«не зачтено»	Вопрос не	раскрыт	или	раскрыт	частично,	основные	идеи,	
	алгоритмы и подходы не изложены.							

7. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

7.1. Литература

- 1. Артюхов, В.В. Общая теория систем: самоорганизация, устойчивость, разнообразие, кризисы [Текст]: монография / В.В. Артюхов. 3-е изд. М.: Книжный дом "Либроком", 2012. 224 с.
- 2. Батунер, Л.М. Математические методы в химической технике. Из. 4-е. [Текст] / Л.М. Батунер, М.Е. Позин. Ленинград : Государственное научно-техническое издательство химической литературы, 1963. 640 с.
- 3. Батунер, Л.М. Математические методы в химической технологии. Изд. 2-е. [Текст] / Л.М. Батунер, М.Е. Позин. Ленинград : Государственное научнотехническое издательство химической литературы, 1955. 482 с.
- 4. Бахвалов Н.С. Численные методы / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. 6-е изд. М.: БИНОМ. Лаборатория знаний, 2004. 636 с.
- 5. Беллман, Ричард. Математические методы в медицине [Текст] : переводное издание / Р. Беллман ; пер.: А.Л. Асаченкова и Н.А. Шальновой ; под ред. Л.Н. Белых. М. : Мир, 1987. 200 с.
- 6. Березин, И.С. Методы вычислений. Т.1. [Текст] : научное издание / И. С. Березин, Н. П. Жидков ; под ред.: Б. М. Будака, А. Д. Горбунова. М. : Гос. изд. физ.-мат. лит., 1962. 464 с.
- 7. Бородин, А.Н. Элементарный курс теории вероятностей и математической статистики [текст] : учебник / А. Н. Бородин. СПб. : Лань, 2002. 254 с.
- 8. Вентцель, Е.С. Теория вероятностей [Текст] : изд. 2-е / под ред. Широкова С.А. Москва : Гос. изд. физ.-мат. лит., 1962. 564 с.
- 9. Вычислительные методы и программирование. Численные методы в задачах электродинамики. XXXII сборник вычислительного центра московского университета. [Текст] / под ред. Дмитриева В.И., Ильинского А.С. М.: МГУ, 1980. 248 с.
- 10. Вычислительные методы и программирование. Численные методы в механике сплошных сред. 34 сборник работ научно-исследовательского вычислительного центра московского государственного университета. [Текст] / под ред. Пасконова В.М., Рослякова Г.С. М.: МГУ, 1981. 176 с.
- 11. Герасименко, Ю.Я. Математическое моделирование электрохимических систем [Текст] : монография / Ю. Я. Герасименко ; Юж.-Рос. гос. техн. ун-т (НПИ). Новочеркасск : ЮРГТУ (НПИ), 2009. 314 с.
- 12. Гнеденко Б.В., Хинчин А.Я. Элементарное введение в теорию вероятностей. Главная редакция физико-математической литературы изд-ва «Наука», 1970. 168 с.
- 13. Головинский, П.А. Математические модели: Теоретическая физика и анализ сложных систем. От нелинейных колебаний до искусственных нейронов и сложных систем [Текст]: монография. Ч. 2 / П. А. Головинский. М.: Книжный дом "ЛИБРОКОМ", 2012. 232 с.
- 14. Гренандер У., Фрайбергер В. Краткий курс вычислительной вероятности и статистики [Текст] / Гренандер У., Фрайбергер В.; пер. С. М. Ермакова. Москва: Физматлит, 1978. 192 с.
- 15. Гутер Р.С., Овчинский Б.В. Элементы численного анализа и математической обработки результатов опыта. [Текст] / Гутер Р.С., Овчинский Б.В. ; ред.

- Араманович И.Г., Морозова И.Е. Москва : Физматлит, 1962. 356 с.
- 16. Джонсон Н. Статистика и планирование эксперимента в технике и науке . Методы обработки данных [Текст] : кн. 1 / Под ред. Э. К. Лецкого. Москва : Мир, 1980. 510 с.
- 17. Джонсон, К. Численные методы в химии [Текст] / Пер. с англ. Под ред. А.М. Евсеева. М.: Мир, 1983. 504 с.: ил.
- 18. Дулов В.Г., Белолипецкий В.М., Цибаров В.А. Математическое моделирование в глобальных проблемах естествознания Новосибирск : Издательство СО РАН, 2005. 247 с.
- 19. Журбенко, И.Г. Стохастическое моделирование процессов [Текст]: научное издание / И.Г. Журбенко, И.А. Кожевникова. М.: Изд. МГУ, 1990. 146 с.
- 20. Золотаревская Д. Теория вероятностей. Изд. 2-е, перераб. и доп. М.: Едиториал УРСС, 2003. 168 с.
- 21. Ильин, В.А. Основы математического анализа. Ч.1. Учебник для вузов [Текст]: учебник. Вып. 1 / Ильин В. А., Позняк Э. Г. 6-е изд., стер. Москва: Физматлит, 2001. 646 с.: ил. 117.
- 22. Ильин, Владимир Александрович. Основы математического анализа. Ч.2. Учебник для вузов [Текст]: учебник. Вып. 2 / Ильин В. А., Позняк Э. Г. 4 изд., стериотип. Москва: Физматлит, 2001. 464 с.
- 23. Исследования по численным методам и теоретической кибернетике [Текст] / отв. ред. Б. А. Щербаков . Кишинев : Штиинца, 1985. 135 с.
- 24. Кобзарь А.И. Прикладная математическая статистика. М.: ФИЗМАТЛИТ, 2006. 816 с.
- 25. Колемаев В.А. Теория вероятностей и математическая статистика. М.: ИНФРА-М, 1997. 302 с.
- 26. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. Изд. 4-е, перераб. М.: Глав. ред. физико-математической литературы изд-ва «Наука», 1976. 543 с.
- 27. Кондрашев В.Е., Королев С.Б. МАТLAB как система программирования научно-технических расчетов [Текст] / Кондрашев В.Е., Королев С.Б. Москва: Мир, Институт стратегической стабильности Минатома РФ, 2002. 350 с.
- 28. Королев, Л. Н. Структуры ЭВМ и их математическое обеспечение [Текст] / Л. Н. Королев. Москва: НАУКА. Гл. ред. физ.-мат. лит., 1987. 352 с.
- 29. Любарский Г.Я., Слабоспицкий Р.П., Хажмурадов М.А. и др. Математическое моделирование и эксперимент. Киев: Наукова Думка., 1987. 160 с.
- 30. Математическое моделирование: Проблемы и результаты /под ред. Макарова И.М., Белоцерковского О.М. и др. М., 2003. 480 с.
- 31. Мирзоахмедов, Ф. Математические модели и методы управления производством с учетом случайных факторов [Текст] / Ф. Мирзоахмедов ; ред. Ю. М. Ермольев. Киев : Наукова Думка, 1991. 224 с.
- 32. Мишина, А. П. Высшая алгебра. Линейная алгебра, многочлены, общая алгебра. [Текст] / А. П. Мишина, И. В. Проскуряков ; под ред. П.К Рашевского. М.: Физматгиз, 1962. 300 с.
- 33. Николис, Г. Самоорганизация в неравновесных системах [Текст] : от диссипативных структур к упорядоченности через флуктуации [Текст] :

- переводное издание / Николис Г., И. Пригожин ; пер. В. Ф. Пастушенко ; под ред. Ю. А. Чизмаджева. М. : Мир, 1979. 512 с.
- 34. Пытьев Ю.П. Методы математического моделирования измерительновычислительных систем. Изд. 2-е, перераб. М.: Физматлит, 2002. 400с.
- 35. Розанов, Ю. А. Теория вероятностей, случайные процессы и математическая статистика [Текст]: уч. пособие / Ю. А. Розанов. Москва: Наука. Гл. ред. физ.-мат. лит., 1985. 320 с.
- 36. Рокицкий, П. Ф. Биологическая статистика [Текст] : учеб. пособие / П. Ф. Рокицкий. Минск : Высшая школа, 1964. 328 с.
- 37. Романовский, Ю. М. Математическая биофизика [Текст] / Ю. М. Романовский, Н. В. Степанова, Д. С. Чернавский; Главная редакция физикоматематической литературы. М.: Наука, 1984. 304 с.
- 38. Самарский А.А. Введение в численные методы. М.: Наука, 1982. 271 с.
- 39. Справочник по теории вероятностей и математической статистике. Изд. 2-е. [Текст] / Королюк В.С., Портенко Н.И., Скороходов А.В., Турбин А.Ф. М.: Наука, 1985. 640 с.
- 40. Узденова, А. М. Математическое моделирование мембранных процессов с использованием Comsol Multiphysics 4.3 [Текст] : учебное пособие / А. М. Узденова, А. В. Коваленко, М. Х. Уртенов, В. В. Никоненко. Краснодар : Кубан. гос. ун-т, 2013. 224 с.
- 41. Нейман фон Дж. Избранные труды по функциональному анализу. 2-х томах. М.: Наука, 1986-1987
- 42. Хемминг, Р. В. Численные методы для научных работников и инженеров. Физико-математическая библиотека инженера. Изд. 2-е. [Текст] / Р. В. Хемминг; ред. пер. Р. С. Гутер. М.: Наука, 1972. 400 с.
- 43. Численные методы решения некорректных задач [Текст] / А. Н. Тихонов [и др.]. Москва : НАУКА. Гл. ред. физ.-мат. лит., 1990. 232 с.
- 44. Чистяков, В. П. Курс теории вероятности. Изд. 6-е. [Текст] / В. П. Чистяков. СПб. : Лань, 2003. 272 с.
- 45. Шишлянникова, В. Н. Численные и графические методы [Текст] / В. Н. Шишлянникова, С. Н. Шишлянникова ; ред. Н. К. Усманов. Рига : Рижский институт инженеров гражданского воздушного флота, 1963. 214 с.

7.2. Электронные ресурсы

- 1. Электронная платформа издательства Elsevier http://www.scopus.com (Реферативно-поисковая база данных Scopus)
- 2. Платформа научной электронной библиотеки e-Library.ru http://www.elibrary.ru
- 3. Электронная платформа издательства SPRINGER http://www.springerlink.com

8. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Лекционные занятия и консультации, самостоятельная работа по освоению дисциплины и подготовка к сдаче кандидатских экзаменов проводятся в специальных помещениях (читальный зал научной библиотеки и/или конференцзалы), оборудованных мебелью (столы, стулья), классной доской (меловой), компьютером, проектором для демонстрации презентаций.