приложение 7

УТВЕРЖДЕНО

приказом ФИЦ КазНЦ РАН от 01.03.2019 № 9-А

Разработано и рекомендовано к утверждению Ученым советом КФТИ - обособленного структурного подразделения ФИЦ КазНЦ РАН 28 ноября 2018 г., протокол № 33

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Взаимовлияние магнетизма и сверхпроводимости»

Уровень высшего образования Подготовка кадров высшей квалификации Направление подготовки

03.06.01 ФИЗИКА И АСТРОНОМИЯ

Направленность подготовки:

Физика магнитных явлений (01.04.11)

Квалификация выпускника:

Исследователь. Преподаватель-исследователь

Содержание:

- 1. Виды учебной деятельности, способ и формы ее проведения.
- 2. Перечень планируемых результатов обучения.
- 3. Место дисциплины в структуре образовательной программы.
- 4. Трудоемкость дисциплины.
- 5. Содержание дисциплины.
- 6. Формы текущего контроля и промежуточной аттестации, фонд оценочных средств.
- 7. Перечень учебной литературы и ресурсов сети "Интернет", необходимых для освоения дисциплины.
- 8. Описание материально-технической базы, необходимой для освоения дисциплины.

1. Виды учебной деятельности, способ и формы ее проведения

Виды учебной деятельности: аудиторные занятия 1 зачетная единица труда (36 часов), самостоятельная работа 6 зачетных единиц труда (216 часов), всего 7 зачетных единиц труда (252 часа).

Форма проведения аудиторных занятий – лекции, лабораторные и практические занятия.

В рамках часов самостоятельной работы по указанию преподавателя аспиранты прорабатывают темы и осваивают теоретические вопросы, излагаемые в лекционном курсе, а также самостоятельно изучают другие вопросы программы.

2. Перечень планируемых результатов обучения

Процесс изучения дисциплины направлен на формирование следующих компетенций:

универсальных

➤ способность проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки (УК-2);

общепрофессиональных

➤ способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК-1);

▶ готовность к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-2)

профессиональных

➤ способность проводить самостоятельные исследования в области физики магнитных явлений, владеть современными методами физического эксперимента, а также способность анализировать экспериментальные данные с целью исследования природы взаимовлияния сверхпроводимости и магнетизма, физических явлений в парамагнетиках, ферромагнетиках, в соединениях с магнитными фазовыми переходами, особенностей магнетизма в сильнокореллированных электронных системах и нанообъектах (ПК-1);

способность принимать участие в разработке новых методов и методических подходов в научных исследованиях в области физики магнитных явлений (ПК-3).

В результате освоения дисциплины аспирант должен

Знать:

➤ методы критического анализа и оценки современных научных достижений, а также методы генерирования новых идей при решении исследовательских и практических задач в области магнетизма и сверхпроводимости;

▶ роль и место теории взаимовлияния магнетизма и сверхпроводимости в современной физике твердого тела; ➤ особенности научной терминологии, понятийный аппарат магнетизма и сверхпроводимости, используемые при представлении результатов научной деятельности в устной и письменной форме;

- > основы теории сверхпроводимости и магнетизма в твердых телах;
- различных физических системах: сплавах, интерметаллических соединениях, сильнокореллированных электронных системах, высокотемпературных сверхпроводниках и мультислоях сверхпроводник/ферромагнетик;
- ▶ существующие методы и методические подходы в научных исследованиях взаимосвязи магнетизма и сверхпроводимости и возможные способы их развития; Уметь:

➤ анализировать альтернативные варианты решения практических задач магнетизма и сверхпроводимости и оценивать потенциальные выигрыши/проигрыши реализации этих вариантов;

▶ выбирать и применять при решении задач магнетизма и сверхпроводимости адекватные экспериментальные и расчетно-теоретические методы исследования;

Владеть:

- ▶ навыками поиска (в том числе с использованием информационных систем и баз данных) и критического анализа информации в области магнетизма и сверхпроводимости;
- ▶ навыками проведения экспериментальных исследований сверхпроводящих материалов.

3. Место дисциплины в структуре образовательной программы

Целью дисциплины «Взаимовлияние магнетизма и сверхпроводимости» является изучение основ физики сверхпроводимости, магнитных фазовых переходов, сосуществования ферромагнетизма И сверхпроводимости интерметаллических соединениях, особенностей сверхпроводимости и магнетизма в сильнокоррелированных электронных системах, взаимосвязи магнетизма сверхпроводимости в высокотемпературных сверхпроводниках и мультислоях сверхпроводник/ферромагнетик. Предполагается освоение фундаментальных основ закономерностей, сверхпроводимости, связанных c взаимодействием сверхпроводимости и магнетизма в высокотемпературных сверхпроводниках и слоистых тонкопленочных структурах сверхпроводник/ферромагнетик.

Дисциплина относится к *дисциплинам по выбору*, входит в состав Блока 1 «Дисциплины (модули)» и относится к вариативной части ОПОП аспирантуры по направлению 03.06.01 «Физика и астрономия», направленности (профилю) Физика магнитных явлений (01.04.11). Индекс (по учебному плану) – **Б1.В.ДВ.1**. Дисциплина изучается на втором курсе.

Актуальность курса обусловлена большой практической значимостью явления сверхпроводимости в энергетике будущего и спинтронике.

Материал, изучаемый в ходе освоения дисциплины, в значительной мере дополняет и расширяет ряд разделов обязательной дисциплины «Физика магнитных явлений».

В курсе используются представления смежных областей физики: квантовой механики и физики твердого тела.

4. Трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 7 зачетных единиц, в том числе **2 3E** аудиторных занятий и **5 3E** самостоятельной работы.

No	Дисциплина	Курс	Виды учебной работы и трудоемкость (в часах)			
			Лекции	Практически	Практически Лабораторн	
			Лекции	е занятия	ые занятия	ая работа
1	Взаимовлияние					
	магнетизма и	2	20	Q	Q	216
	сверхпроводи-		20	O	8	210
	мости					

5. Содержание дисциплины

5.1. Лекционные занятия

(аудиторная нагрузка 20 часов, самостоятельная работа 120 часов)

№ п/п	Наименование раздела дисциплины	Содержание раздела
1	Сверхпроводимость	Сверхпроводимость. Основные свойства сверхпроводников. Сверхпроводники I и II рода. Энергетическая щель. Основы микроскопической теории сверхпроводимости. Различные типы спаривания и их симметрия. Сверхпроводимость в системах с неоднородным параметром порядка.
2	Магнитные фазовые переходы	Магнитные фазовые переходы. Критические явления (критические индексы и соотношения между ними). Связь фазовых переходов с симметрией. Фазовые переходы в малоразмерных магнитных системах. Квантовые флуктуации в спиновых системах. Явления фрустрации в фазовых переходах.
3.	Взаимовлияние магнетизма и сверхпроводимости	Особенности магнетизма в сильно- коррелированных электронных системах. Сосуществование ферромагнетизма и сверхпроводимости в сплавах и интерметаллических соединениях. Магнитное упорядочение примесей в сверхпроводящем состоянии. Сосуществование ферромагнетизма и сверхпроводимости в слоистых тонкопленочных

	системах свер	хпроводник/ фер	ромагнетик. Эффект
	близости	сверхпровод	цник/ферромагнетик.
	Подавление	температуры	сверхпроводящего
	перехода за	счет эффекта бли	изости. Перестройка
	магнитной ст	руктуры в феррог	магнитном слое под
	воздействием	сверхпроводимос	ти.

5.2. Лабораторные занятия

(аудиторная нагрузка 8 часов, самостоятельная работа 48 часов)

№ п/п	Наименование раздела дисциплины	Примеры выполняемых экспериментальных работ
1	Взаимовлияние магнетизма и сверхпроводимости	Измерение сверхпроводящих параметров образцов (температура сверхпроводящего перехода, критическое поле).
2	Взаимовлияние магнетизма и сверхпроводимости	Измерение петель гистерезиса с помощью СКВИД магнитометра.

5.3. Практические занятия

(аудиторная нагрузка 16 часов, самостоятельная работа 48 часов)

№ п/п	Наименование раздела дисциплины	Тематика семинаров			
1.	Взаимовлияние магнетизма и сверхпроводимости	Нобелевская лекция: Микроскопическая теория сверхпроводимости (J. Bardeen, L.N. Cooper, J.R. Schrieffer, 1972) Доклад на основе лекции и дискуссия			
	Взаимовлияние магнетизма и сверхпроводимости	Нобелевская лекция: Слабая сверхпроводимость. Эффект Джозефсона (B.D. Josephson, 1973) Доклад на основе лекции и дискуссия			
	Взаимовлияние магнетизма и сверхпроводимости	Нобелевская лекция: Гигантское магнетосопротивление (A. Fert, P. Gruenberg, 2007) Доклад на основе лекции и дискуссия			
	Взаимовлияние магнетизма и сверхпроводимости	4. СКВИД-магнитометр			

6. Формы текущего контроля и промежуточной аттестации, фонд оценочных средств

Текущий контроль освоения дисциплины проводится регулярно, начиная со второй недели обучения, в форме контроля посещаемости, устного опроса по теме, анализа результатов решения практических задач и выполненных лабораторных работ.

Промежуточный контроль подразумевает проведение коллоквиума по учебному материалу нескольких тем.

Формой итогового контроля по дисциплине является зачет.

6.1. Контрольные темы и вопросы для проведения текущего и итогового контроля по дисциплине «Взаимовлияние магнетизма и сверхпроводимости»:

Тема 1. Сверхпроводимость. Основные свойства сверхпроводников. Сверхпроводники I и II рода

Сверхпроводящие материалы. Эффект Мейснера. Разрушение сверхпроводимости магнитным полем. Сверхпроводники I и II рода.

Тема 2. Энергетическая щель. Основы микроскопической теории сверхпроводимости

Теплоемкость. Поглощение СВЧ излучения. Релаксация ядерного спина. Туннельный эффект. Электрон-фононное взаимодействие. Куперовские пары. Энергия основного состояния. Энергетическая щель при 0 К. Симметрия энергетической щели. Туннельный эффект Джозефсона.

Тема 3. Фазовые переходы в малоразмерных магнитных системах. Фрустрации

Ближний порядок. Модель Изинга. Дальний порядок. Параметр дальнего порядка. Квантовые флуктуации. Фрустрации.

Тема 4. Особенности магнетизма в сильно коррелированных электронных системах

Сильно коррелированные электроны и сверхпроводимость. Высокотемпературная сверхпроводимость. Квантовые критические явления и магнитные свойства. Сильно коррелированные системы различной природы.

Тема 5. Сосуществование ферромагнетизма и сверхпроводимости в сплавах и интерметаллических соединениях. Магнитное упорядочение примесей в сверхпроводящем состоянии

Парамагнитные примеси в сверхпроводниках. s-d модель. Теория Абрикосова—Горькова. Невозможность реализации ферромагнетизма в сверхпроводящем состоянии. Возможный тип магнитного упорядочения в сверхпроводнике. Экспериментальное наблюдение этого порядка.

Тема 6. Сосуществование ферромагнетизма и сверхпроводимости в слоистых тонкопленочных системах сверхпроводник/ферромагнетик

Эффект близости сверхпроводник/нормальный металл. Эффект близости сверхпроводник/ферро-магнетик. Подавление температуры сверхпроводя-щего перехода за счет эффекта близости. Возвратная сверхпроводимость. Эффект спинового клапана.

Тема 7. Перестройка магнитной структуры в ферромагнитном слое под воздействием сверхпроводимости

Теория Буздина, основанная на термодинамическом подходе. Теория Берджерет и др. Экспериментальное наблюдение перестройки магнитной структуры в двухслойных пленках сверхпроводник/ферромагнетик.

6.2. Критерии оценки и шкала оценивания результатов освоения дисциплины:

№	Результат освоения дисциплины	Балл	Показатели	
п/п			оценивания	
Знание				

		T	T
1.	методов критического анализа и оценки современных научных достижений, а	1	недостаточный уровень знания
	также методов генерирования новых идей при решении исследовательских и	2	достаточный уровень знания
	практических задач в области магнетизма и сверхпроводимости	3	высокий уровень
2.	роли и места теории взаимовлияния	1	знания недостаточный уровень
2.	магнетизма и сверхпроводимости в		знания
	современной физике твердого тела	2	достаточный уровень знания
		3	высокий уровень знания
3.	особенностей научной терминологии,	1	недостаточный уровень
٥.	понятийного аппарата магнетизма и	1	знания
	сверхпроводимости, используемых при представлении результатов научной	2	достаточный уровень знания
	деятельности в устной и письменной	3	высокий уровень
	форме		знания
4.	основ теории сверхпроводимости и магнетизма в твердых телах	1	недостаточный уровень знания
		2	достаточный уровень
		2	знания
		3	высокий уровень знания
5.	проявлений взаимовлияния магнетизма и	1	недостаточный уровень
	сверхпроводимости в различных физических системах: сплавах,	2	знания достаточный уровень
	интерметаллических соединениях,		знания
	сильнокореллированных электронных	3	высокий уровень
	системах, высокотемпературных		знания
	сверхпроводниках и мультислоях		
6	сверхпроводник/ферромагнетик	1	
6.	существующих методов и методических подходов в научных исследованиях	1	недостаточный уровень знания
	взаимовлияния магнетизма и	2	достаточный уровень
	сверхпроводимости и возможных	2	знания
	способов их развития	3	высокий уровень
	•		знания
Уме	ение		
1.	анализировать альтернативные варианты	1	не умеет
	решения практических задач магнетизма	2	частично освоенное
	и сверхпроводимости и оценивать		умение
	потенциальные выигрыши/проигрыши	3	сформированное
	реализации этих вариантов	1	умение
2.	выбирать и применять при решении задач	1	не умеет
	магнетизма и сверхпроводимости	2	частично освоенное
	адекватные экспериментальные и		умение

	расчетно-теоретические методы	3	сформированное
	исследования		умение
Вла	дение		
1.	навыками поиска (в том числе с	1	не владеет
	использованием информационных	2	частично освоенные
	систем и баз данных) и критического		навыки
	анализа информации в области	3	сформированные
	магнетизма и сверхпроводимости		навыки
2.	навыками проведения	1	не владеет
	экспериментальных исследований	2	частично освоенные
	сверхпроводящих материалов		навыки
		3	сформированные
			навыки
Ито	ого баллов	20–30	«зачтено»
		менее	«не зачтено»
		20	

7. Перечень учебной литературы и ресурсов сети "Интернет", необходимых для освоения дисциплины

7.1. ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Вонсовский С.В. Магнетизм. М.: Наука, 1984.
- 2. Вонсовский С.В., Кацнельсон М.И. Квантовая физика твердого тела. М.: Наука, 1983.
- 3. Займан Дж. Модели беспорядка. М.: Мир, 1982.
- 4. Займан Дж. Принципы теории твердого тела. М.: Мир, 1974.
- 5. Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978.

7.2. ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. Rado G.T. and Suhl H. Magnetism Vol.5. New York and London, 1973.
- 2. Линтон Э. Сверхпроводимость. М. «Мир», 1971.
- 3. Сан Жам Д., Сарма Г., Томас Е. Сверхпроводимость второго рода. М. Мир, 1970.
- 4. Уайт Р. Квантовая теория магнетизма. М.: Мир, 1985.
- 5. Уайт Р., Джебелл Т. Дальний порядок в твердых телах. М. «Мир», 1982.
- 6. Шмидт В.В. Введение в физику сверхпроводимости. М.: Наука, 2000.

7.3. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

7.3.1. НЕКОММЕРЧЕСКИЕ ЭЛЕКТРОННЫЕ БИБЛИОТЕЧНЫЕ СИСТЕМЫ (ЭБС) СВОБОДНОГО ДОСТУПА

- ➤ Библиотека международного издательства INTECHOPEN http://www.intechopen.com/
- Научная электронная библиотека eLIBRARY.RU www.elibrary.ru
- Научная электронная библиотека КиберЛенинка http://www.cyberleninka.ru/

- ► Полнотекстовая электронная библиотека РФФИ http://www.rfbr.ru/rffi/ru/library
- > Электронная библиотека «Научное наследие России» http://www.e-heritage.ru/index.html
- > Электронная библиотека ИФТТ PAH http://www.issp.ac.ru/libcatm/elib.html
- ➤ Электронная библиотека международного научно-образовательного сайта EqWorld http://eqworld.ipmnet.ru/indexr.htm

7.3.2. РЕФЕРАТИВНЫЕ БАЗЫ ДАННЫХ НАУЧНЫХ ИЗДАНИЙ И НАУЧНЫЕ ПОИСКОВЫЕ СИСТЕМЫ

- ➤ ArXiv: Open access to 1,146,534 e-prints in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics (Электронный архив публикаций библиотеки Корнелльского университета) http://xxx.lanl.gov/archive
- ➤ Directory of Open Access Books (DOAB) http://doabooks.org/
- ➤ Directory of Open Access Journals (DOAJ) http://www.doaj.org
- ➤ Science Research Portal научно-поисковая система, осуществляющая полнотекстовый поиск в журналах многих крупных научных издательств, таких как Elsevier, Highwire, IEEE, Nature, Taylor & Francis и др., в открытых научных базах данных: Directory of Open Access Journals, Library of Congress Online Catalog, Science.gov и Scientific News http://www.scienceresearch.com
- ➤ Международная реферативная база по физике, астрономии, теории частиц ADS(NASA) http://adsabs.harvard.edu/
- ▶ Российский индекс научного цитирования (РИНЦ) http://elibrary.ru/project_risc.asp

7.3.3. ЖУРНАЛЫ И КНИГИ

- ➤ List of Free Physics Books | Physics Database http://physicsdatabase.com/free-physics-book
- ➤ Nature Communications http://www.nature.com/ncomms/index.html
- New Journal of Physics http://iopscience.iop.org/journal/1367-2630
- Physical Review X http://journals.aps.org/prx/
- Physics Books Free Computer Books http://www.freebookcentre.net/Physics/Physics-Books-Online.html
- Scientific Reports http://www.nature.com/srep/
- ➤ Журналы физико-технического института им А.Ф. Йоффе РАН: «Журнал технической физики», «Письма в журнал технической физики», «Физика твердого тела», «Физика и техника полупроводников» http://journals.ioffe.ru/
- ➤ Труды института общей физики им. А.М. Прохорова РАН http://www.gpi.ru/trudgpi.php

7.3.4. ОБРАЗОВАТЕЛЬНЫЕ И СПРАВОЧНЫЕ РЕСУРСЫ «ИНТЕРНЕТ»

- > ETH Zurich group about EPR http://www.epr.ethz.ch
- European community of Magnetism http://magnetism.eu
- ➤ International Society of Magnetic Resonance https://www.weizmann.ac.il/ISMAR/education
- ➤ Magnetic Resonance Imaging http://www.magnetic-resonance.org

- ➤ Molecular magnetism http://www.molmag.de
- ➤ Библиотека Гумер. Гуманитарные науки. http://www.gumer.info/bibliotek_Buks/Pedagog/
- ➤ Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/
- ➤ Информационная справочно-правовая система «Консультант плюс» http://www.consultant.ru/ (некоммерческая версия)
- ▶ Российское магнитное общество http://www.amtc.ru/mago/
- ➤ Специализированный портал по информационно-коммуникационным технологиям в образовании http://www.ict.edu.ru/
- ➤ Справочно-информационный портал ГРАМОТА.РУ http://www.gramota.ru/
- > Техническая библиотека http://techlibrary.ru/
- Федеральный портал «Российское образование» www.edu.ru

8. Описание материально-технической базы, необходимой для освоения дисциплины

Обучение по дисциплине ведётся с применением как традиционных методов (лекции, практические занятия, лабораторные работы), так и с использованием инновационных подходов: активное участие аспирантов в научных семинарах подразделений КФТИ – обособленное структурное подразделение ФИЦ КазНЦ РАН по профилю подготовки, представление докладов на научной конференции молодых ученых КФТИ – обособленное структурное подразделение ФИЦ КазНЦ РАН и молодежных научных школах, подготовка научных статей, подготовка презентаций по литературе для дополнительного изучения.

Аудиторные занятия, целью которых является освоение теоретических основ дисциплины, проводятся в интерактивной форме с использованием мультимедийного оборудования. Презентации позволяют качественно иллюстрировать практические занятия схемами, формулами, чертежами, рисунками. Кроме того, презентации позволяют четко структурировать материал занятия. Электронная презентация позволяет отобразить процессы в динамике, что позволяет улучшить восприятие материала.

Практические занятия (семинары) посвящены подробному обсуждению лекций лауреатов Нобелевской премии по физике 1972, 1973 и 2007 годов, посвященных проблемам магнетизма и сверхпроводимости.

В ходе лабораторных занятий аспирантам предоставляется возможность изучить специфику экспериментальных исследований сверхпроводящих материалов, познакомится с принципами работы и возможностями современной экспериментальной аппаратуры и оборудования, получить практические навыки интерпретации экспериментальных результатов.

Самостоятельная работа аспирантов подразумевает углубленное освоение теоретического материала, выполнение индивидуальных заданий, подготовку к текущему, промежуточному и итоговому контролю успеваемости. В целях формирования способности к критическому анализу информации и поиску путей

решения поставленных задач в дальнейшей профессиональной деятельности используется технология проблемного обучения, требующая значительных временных ресурсов, что предусмотрено структурой дисциплины, и предполагает самостоятельную проработку учебно-проблемных задач аспирантами, выполняемую с привлечением основной и дополнительной литературы; поиск необходимой научнотехнической информации в открытых источниках, консультации с преподавателем.

Самостоятельная работа аспирантов осуществляется: в домашних условиях, в читальном зале библиотеки, на персональных рабочих местах аспирантов с доступом к ресурсам «Интернет», в научных подразделениях КФТИ — обособленное структурное подразделение ФИЦ КазНЦ РАН с доступом к лабораторному оборудованию и приборам.

Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим учебники, учебно-методические пособия, конспекты лекций, ресурсы «Интернет».

Материально-техническое обеспечение дисциплины:

- ➤ библиотека с читальным залом, книжный фонд которой составляет специализированная методическая и учебная литература, научная периодика;
- ➤ зал, оснащённый стационарным проектором, экраном и обычной доской для проведения лекционных занятий;
- учебная аудитория, оснащенная переносными проектором и экраном для проведения практических занятий;
- ➤ индивидуальные рабочие места аспирантов, оснащенные персональным компьютерами с доступом к сети «Интернет», локальной сети и электронной информационно-образовательной среде ФИЦ КазНЦ РАН.
- В учебном процессе аспиранты используют современное научное оборудование профильных подразделений КФТИ обособленное структурное подразделение ФИЦ КазНЦ РАН:
- Установка для измерения электросопротивления в магнитном поле до 10 кЭ и при температуре до 1.5 К.
- ▶ СКВИД магнитометр, позволяющий проводить измерения в магнитных полях до 10 кЭ и до температур 1.5
- ➤ Спектрометр ЭПР BE-R418 для исследования в стационарном режиме стабильных парамагнитных центров в X-диапазоне.